3D Printed Omni-Drectional Wheel / Fidget Toy

by BasementMaker in Workshop > 3D Printing

5564 Views, 59 Favorites, 0 Comments

3D Printed Omni-Drectional Wheel / Fidget Toy

IMG_1140.JPG

This instructable will show you how to go about building an omni-directional wheel for use as a fidget toy or as an omniwheel.

What Is an Omni-directional Wheel?

SV_0913_Swan_Figure07.jpg

Omni-directional wheels are similar to normal wheels, except they have "rollers" built into the sides. These rollers allow the wheels to slide from side to side. Imagine if you had four omni-directional wheels installed on a toy car. Normally, you would only be able to push this car forwards and backwards, but with the omni-wheels, the car can move in all four directions. Basically, an omni-wheel is a wheel with many tiny wheels built into it.

At this point, you may be wondering what an omni-wheel is good for. When used correctly, an omni-directional wheel can allow a vehicle (usually some sort of robot) to move in four directions (forward, backward, left, or right) without turning the chassis. This is achieved by rotating each wheel independently (either clockwise or counterclockwise). For example, look at the third image above. The red rectangles represent the rollers in the omni-directional wheel. When just two of the wheels are turning in the same direction, the chassis will move in that direction because the rollers on the wheels perpendicular to the rotating wheels eliminate the friction with the ground. By using this technique, omni-directional movement can be accomplished.

(Image from Servo Magazine)

Supplies

IMG_1141.JPG

For this project, you will need:

  • m2x6 screw (x12)
  • m2 nut (x12)
  • m2x6 standoff (x3)
  • 12 gauge solid core wire (more than 102 mm)
  • Sandpaper
  • Access to a 3D printer

3D Printing

IMG_1132.JPG

Download these STL files for the wheel and print them. You will need:

  • roller (x12)
  • base (x1)
  • cap (x1)
  • indexed - base (x1)
  • indexed - cap (x1)

*Note: There are two types of wheels. They may look similar, but one of the files has holes indexed by 15 degrees (pi/12 for those people).

Cut the 12 Gauge Wire Into 6 Pieces About 8.5mm in Length.

IMG_1136.JPG
IMG_1133.JPG

Insert the Wires Into the Rollers

IMG_1135.JPG

Make sure that the midpoint of the wire is about coincident with the midpoint of the rollers.

Place the Rollers in the Wheel Base

IMG_1137.JPG

Use your finger to test the spinning ability of the rollers. They should turn easily with very little friction. If they get stuck or are difficult to turn, you can sand them down until they rotate to your liking.

Place the Wheel Cover on the Wheel Base

IMG_1138.JPG

Fasten the Wheel Cover to the Wheel Base

IMG_1139.JPG

Use the m2x6 screws for this step.

Repeat Steps 3-7 for the Indexed Wheel

IMG_1130.JPG

Attach the Standoffs to a Wheel

IMG_1143.JPG
IMG_1144.JPG
IMG_1142.JPG

Use the m2x6 screws and m2x6 standoffs for this step.

Fasten the Separate Wheels Together

IMG_1148.JPG
IMG_1145.JPG
IMG_1129.JPG

Use the remaining 3 m2x6 screws for this step.

Quarter for Scale

IMG_1149.JPG

Conclusion

IMG_1146.JPG

I have not yet tested this wheel in omni-directional movement, so if you choose to use this design in your project, I can not guarantee it will work (if anyone does use it in their project, I would love to hear how it goes). However, I do have experience with this as a fidget toy. I sat through many remote learning sessions with this in hand, and I have learned that to get the best out of this design, you should only use half of it (the result after step 7). This lowers the profile of the object by more than half, and allows it to fit extremely well in the jean "watch pocket" (you know, the tiny pocket inside of the larger pocket).

I hope this instructable inspired you. If you have any questions, concerns, pointers, or criticisms, don't hesitate to leave a comment. I will be happy to discuss this project with you, and there is always something I can learn.

Thanks for taking the time to view this project.

--BasementMaker