
Coding:
Full code can be seen in the Appendix. Below is a description of each section.

Initialization/Setup
This code only runs once. In this section pins are assigned to input/output, libraries to run the
stepper motor and servo motor are loaded, and both the stepper and servo objects are created and
initialized.
A boolean variable SetUp is set to = false.
Also in this section seven arrays are created, six of which will serve to store the reference values
for the six m&m colors, and one of which will be reused for each m&m test. Each array holds
three photoresistor readings and a tally for how many m&ms that array has identified.

Functions
Brief overview of each function and when it is used.

MovetoLimit()
This function moves the stepper motor clockwise until the limit switch is hit. It also uses
a basic for loop to time how long the stepper has been moving. If too much time has
passed, that means the top disk has gotten jammed, in which case the function will briefly
reverse the stepper direction and then continue clockwise. This does an excellent job of
catching mechanical jams. Function is called by Sort() and SetupSort().

setLED()
Function sets the RGB LED to a set of three PWM values. Function is called by
CollectColor().

CollectColor(int samples, int ColorArray[])
Function takes a color array and int samples as arguments. When called, function flashes
the white LED and takes a photoresistor value to determine if the chamber is loaded. If
so, the function shines red, blue, and green light from the RGB LED, takes corresponding
photoresistor values, and stores them in the array. With samples > 1, each photoresistor
value is an average of (samples) readings. This feature may not have a significant effect
on accuracy. If no m&m is detected, Array is set to zeros. Function is called by
CollectReferences().

Sort(int ID)
Function controls servo motor and stepper motor to dispense m&m into one of
compartments 1 through 6, depending on ID. If fed zero, stepper continues clockwise to
load another m&m.



SetupSort(int ID)
Has the exact same function as Sort() but with slightly different rotation values calibrated
for the expectation that there is only one m&m in the loading site. Only called during
CollectReferences()

CollectReferences(int Color1[] … int Color6[])
Function takes all reference arrays and, using SetupSort() calls CollectColor() to collect
initial references for the six colors, based off of the first six m&ms it sees.

FindMatch(int TestColor[], int Color1[] … int Color6[])
Function takes the test array and compares it to the reference values in the six reference
arrays using a least squares approach. For the closest array, the function returns an int
with the corresponding ID, if no m&m was detected (ie. TestArray = [0,0,0,..]), function
returns zero. FindMatch also calls UpdateReference() with the ID of the identified color.

UpdateReference(TestArray[], ColorArray[])
Function takes the test array and the color reference of the identified color. Then, using
the tally for that color (the fourth value of the reference array) it updates the reference
values for that color to be an average of all identified m&ms of that color, including the
one just identified (TestArray[]). This feature was added to correct for some occasional
misidentifications and has increased robustness dramatically. Function is called by
FindMatch().

EndScript(int match, int VoidTally, int TestArray[], int Color1[] … int Color6[])
This function keeps track using the variable VoidTally of how many consecutive times
the machine has failed to load an m&m into the chamber. If that number reaches 10, it is
assumed that the m&m reservoir is empty and the function prints the statistics for the run
and ends the program using exit(0);

Main Loop
The main loop starts by checking if boolean SetUp == false. If so, it calls CollectReferences() to
collect initial reference reference values and sets SetUp = true.

With an m&m now loaded, the loop calls CollectColor() to sense the loaded m&m.
Then, FindMatch() identifies the m&m and updates the associated reference values.
Using Sort() the program sorts the m&m and simultaneously loads another.

The identification ID is fed to EndScript() so that if the chamber has been empty ten times in a
row, the program will terminate.


