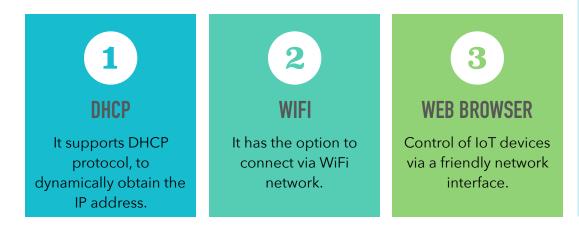

Bollard Controller IAIJM-01


Relay Control through TCP / IP protocol

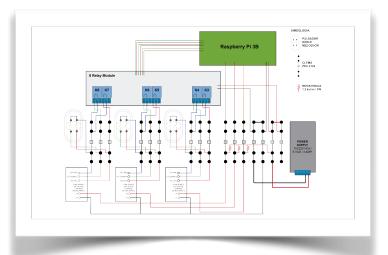
Relay Control through TCP / IP protocol

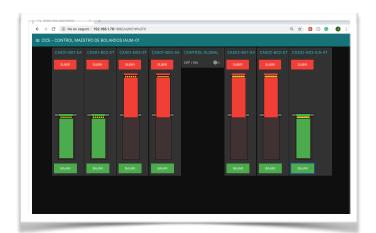
Raspberry Pi 3 computer-based controller

It allows the control of up to 3 Bollards via TCP / IP. The raspberry computer runs a special version of Linux configured for handling IoT devices. This way you can control up to 3 Bollards. The control is both local through an external keypad, as well as remote via wired ethernet network or via WiFi.

Safety Bollard Controller of any type that supports dry contact control.

Bollard Control through industrial Push-Buttons




Bollard Controller through TCP / IP network protocols.

IoT based Control Software

The relay control is implemented through the famous IBM IoT software: Node-Red.

Node-RED is a programming tool to connect hardware devices, APIs and online services quickly and easily. This software is used to create relay control via a web page. Two relays are required for the control of a Bollard. The system is programmed to operate each Bollard individually or as a group. The internal wiring of the system allows each Bollard to also be controlled externally through a keypad.

"Manual and remote bollard control"

The system is housed inside an ABB IP65 cabinet. Internally, the Raspbery Pi 3 controller is located with a small Touch display, as well as the relay card and wiring terminals that allow the connection of up to 3 Bollards with their respective keypads. The power supply is 110 VAC and has inside a switched power supply of 110VAC / 5 VDC 3 AMP.

INSTALLATION REQUIREMENTS

ABS ABB IP65 cabinet. External measurements are 275mm wide, 220mm high and 140mm deep.

In the lower Wall it has a heavy-duty 1 "PVC pipe connector at the bottom for the connection of Bollards and two glands: one for the 110 VAC power input and one for the network cable.

