
Predicting the Behavior of a Rat Trap Based on a Simplified Physical Model 

Physical Model 

The following is an analysis of a rat trap from the point it is released until the bar slams shut against the 

wooden base.  The analysis uses a simplified model based on the physics of ideal springs and simple 

harmonic motion. 

In this simplified analysis, many things have been idealized.  Frictional forces, air resistance, and 

gravitational forces have been neglected.  The energy used to push the hook up and out of the way has not 

been considered.  The spring is assumed to be ideal, where the torsion constant does not change with the 

angle.   

Moment of Inertia of the Bar 

One of the most important parameters that you need to determine is the moment of inertia of the bar. This 

parameter is used in the analysis of many situations where rotational motion is being examined.  It is a 

characteristic of a rotating object, and it depends on the geometry and mass of the object and the axis 

about which it is rotated.  Moment of inertia is analogous to the mass of an object when dealing with linear 

motion. 

The bar consists of a rectangular wire loop, and the moment of inertia contribution of each of the four sides 

of the loop must be determined separately. For simplicity the wire of the loop will be considered to be 

“infinitely thin”.  

The picture below identifies each of the four sides. 

 

Contribution from sections 1 and 2 

The contributions of sections 1 and 2 are identical, as they are for all practical purposes identical in 

geometry and mass and they rotate about the same point. 

The moment of inertia of a single thin rod rotating about one end is: 
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Where M is the mass of the rod segment and L is the length of the rod. This equation is used to determine 

the contribution from each of the two sides of the rectangular wire loop that forms the bar.  

 



Contribution from section 3 

The moment of inertia contribution from the front portion of the loop is determined differently.  It is equal 

to the mass of that section, multiplied by the square of the length L.  
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Where M is the mass and L is the length of rod segment 3. 

Contribution from section 4 

The moment of inertia contribution from this part of the loop can be neglected, as its contribution is 

minimal compared to that of the other three sections of the loop.  Its mass is concentrated much closer to 

the axis of rotation than that of the other segments, so its contribution is much smaller. 

Torsion Constant of the spring 

The torsion constant of the spring is a value that determines how much torque will be required to move the 

spring through a given angle. It is expressed in torque per angle. In the case of an ideal spring, it is a 

constant and does not change with the position angle. 

This constant needs to be calculated from measurements. For the trap, it was determined by pulling the 

bar with a spring scale while keeping the angle between the applied force and the bar equal to 90 degrees.  

The torque value is equal to the force measured multiplied by the length of the bar. 

If two torque measurements are made, the torsion constant is determined by dividing the difference in 

torque by the difference in angle: 
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Equations of Motion 

The spring exerts torque on the bar.  The torque is equal to the moment of inertia multiplied by the 

angular acceleration. 

ατ ⋅= I  

The angular acceleration is the second derivative of θ with respect to time, so this can also be written as: 
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The torque is determined by the product of the torsion constant and the angle, so: 
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Rearranging we get: 
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The solution to the equation above is a sinusoidal function: 

)cos()( tt ⋅⋅Θ= ωθ  



This is the equation for the angular position of the bar as a function of time.  In the equation, Θ is the full 

scale angular displacement of the motion, and ω is the frequency of the oscillation. 

In the case of the trap, the full scale angular displacement is the angle between the wooden base and the 

bar when the trap is set.  It is almost 180 degrees for a rat trap.  

The frequency of oscillation is determined by the torsion constant k of the spring and the moment of inertia 

I of the bar as follows: 
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This is a case of simple harmonic motion.  If the bar could move unobstructed, it would oscillate back and 

forth in simple harmonic motion.  In the ideal case considered here, where there is no friction, etc. the 

oscillation would continue forever.   

In the case of the trap, the bar is abruptly stopped in the middle of the first half cycle of oscillation when it 

slams into the wooden base.  Even through the bar will not oscillate more than ¼ of a cycle, the equations 

of simple harmonic motion can be used to show its how its position and velocity change over time. 

Potential Energy 

It is also useful to examine the potential energy stored in the spring.  When the trap is set, potential 

energy is stored in the spring.  In the idealized case, all the stored potential energy will be converted into 

kinetic energy as the bar is released and it accelerates toward the wooden base. 

The change in potential energy stored in the spring as a function of the angle through which it is moved is 

determined by: 
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If the torque is linearly related to the angle, which is the case of the ideal spring, then the integral results 

in the following formula: 
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This represents the energy stored in the spring when moving from angle 1θ  to 2θ . 

Kinetic Energy 

The kinetic energy of a rotating object is given by: 
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Where ω is the angular velocity. 

A maximum value for the angular velocity of the bar can be obtained using conservation of energy.  If the 

kinetic energy is set equal to the potential energy stored in the spring and you solve for the angular 

velocity, the equation is: 
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This is the maximum angular velocity in radians per second, if all of the stored potential energy is 

converted into kinetic energy.  In the real world there will be losses of energy that will make the maximum 

velocity somewhat lower. 

Results: 

The next page contains a spreadsheet of the results of the analysis of a rat trap, based on the equations 

presented above. 

When the time to close value was measured on a real trip, the observed value was 23 milliseconds, 

whereas the value predicted using the model presented here is 14.5 milliseconds.  In an actual trap, 

frictional losses would reduce the speed, so we would expect the value calculated for the ideal case to be 

faster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resulting Calculations for a Victor Rat Trap. 

Bar Dimensions and other Parameters

A= 2.79 in 0.0709 m Width of wire loop (bar)

B= 3.203 in 0.0814 m Length of wire loop (bar)

wire_dia= 0.135 in 0.0034 m Wire diameter of wire loop (bar)

density= 8 g/cm3 8000 kg/m3 Assumed density of wire material

Mass of bar sections

M1= 0.00601 kg Mass of bar section 1

M2= 0.00601 kg Mass of bar section 2

M3= 0.00524 kg Mass of bar section 3

Moment of inertia of bar sections

I1= 1.326E-05 kg*m2 Moment of inertia of bar section 1

I2= 1.326E-05 kg*m2 Moment of inertia of bar section 2

I3= 3.465E-05 kg*m2 Moment of inertia of bar section 3

I_total= 6.117E-05 kg*m2 Total moment of intertia

Force and Torque

F1= 6.5 lbs 28.364 N Force on front of bar, when set

F2= 0.5 lbs 2.182 N Force on front of bar, when closed

T1= 2.308 N*m Torque on bar when set

T2= 0.178 N*m Torque on bar when closed

Th_1 170 deg 2.967 rad Angle of bar when set

Th_2 0 deg 0 rad Angle of bar when closed

Th_0= -3.247 deg -0.057 rad Angle at which the spring is completely relaxed

173.247 deg 3.024 rad Full scale angular displacement of bar

Torsion Constant

k= 0.71790 N*m/rad Spring torsion constant

Potential Energy

E= 3.16 Joules Potential energy stored in spring when set

Angular Frequency

w= 108.330 rad/sec 17.241 rev/sec Frequency of oscillation (simple harmonic motion)

58.000 millisec/rev Time of a single cycle (simple harmonic motion)

14.500milliseconds Time to close (bar impacts wood base)

Final Angular Velocity

321.422

rad/s

51.156 rev/sec

Final rotational velocity of bar before impact. (Determined by 

setting potential energy equal to final kenetic energy and 

solving for the angular velocity.

Final Linear Velocity

85.793 ft/sec 58.495 miles/hour Linear velocity of front of bar, prior to impact with the base  

 



The following graphs show the calculated results for the angular position of the bar with respect to time, 

the angular velocity with respect to time, and the linear speed of the front of the bar (section 3) with 

respect to time.  The time scale is in milliseconds. The red line shows the point at which the bar strikes the 

wooden base.  

The portions of the graphs beyond that point represent how the system would behave if it could swing 

back and forth in simple harmonic motion, unimpeded.   

Note that the peak linear velocity of the bar is just over 50 miles per hour prior to impact! 

 

 

 


