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Basic operations with 

AT90S1200 and TINY12 

The best way to learn is through example and by doing things yourself. For the 
rest of the book we will cover example projects, many of which will be largely 
written by you. For this to work most effectively, it helps if you actually try these 
programs, writing them out as you go along in Notepad, or whatever develop- 
ment environment you're using. If you don't have any special AVR software at 
the moment, you can still write the programs out in Notepad and test them later. 

First of all, copy out the program template covered in the previous chapter, 
adjusting it as you see fit, and save it as template.asm. If you are using 
Notepad, make sure you select File Type as Any File. The .asm file extension 
refers to assembly source, i.e. that which will be assembled. 

Program A: LEDon 

�9 Controlling outputs 

Our first few programs will use the 1200 chip. Load up the template, Save As 
to keep the original template unchanged, and call the file ledon.asm. Make the 
appropriate adjustments to the headers etc. relevant to the 1200 chip (header, 
.device, and .include). This first program is simply going to turn on an LED 
(and keep it on). The first step is to assign inputs and outputs. For this project 
we will need only one output, and will connect it to RB0. The second step in the 
design is the flowchart. This is shown in Figure 2.1. From this we can now write 
our program. The first box (Set-up) is performed in the Init routine. You should 
be able to complete this section yourself (remember, if a pin is not connected, 
make it an output). 

I Set-up ] 

F 
Turn on LED 

Figure 2.1 
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The second box involves turning on the LED, which means making RB0 
high, which means setting bit 0 on PORTB to 1. To do this we could move a 
number into telnp, and then move that number into PortB; however, there is a 
shortcut. We can use the following instruction: 

sbi ioreg, bit ; 

This sets a bit in an I/O register. Although you cannot move a number directly 
into an I/O register, you can set and clear the bits in some of them individually. 
You cannot set and clear individual bits in I/O registers 32-63 ($20-$3F in 
hex). Fortunately, PortB ($18) and indeed all the PORTx and PINx registers can 
be controlled in this fashion. The equivalent instruction for clearing the bit is: 

cbi ioreg, bit ; 

This clears a bit in an I/O register, though remember this only works for I/O 
registers 0-31. For our particular application, we will want to set PortB, 0 and 
so will use the following instruction at the point labelled Start: 

Start: sbi PortB, 0 ; turns on the LED 

The next line is: 

rjmp Start ; loops back to Start 

This means the chip will be in an indefinite loop, turning on the LED. The 
program is now ready to be assembled. You can check that you've done every- 
thing right by looking at the complete program in Appendix J under Program A. 
All subsequent programs will be printed in the back in the same way. We will 
now assemble the program, but if you do not have the relevant software just read 
through the next section. You can download AVR Studio from Atmel's website 
(www.atmel.com) for free (last time I checked). This assembles, simulates and 
(with the right hardware) allows you to program the AVR chip. 

AVR Studio-assembling 

First of all load AVR Studio. Select Project ~ New Project and give it a name 
(e.g. LEDon), pick a suitable location, and choose AVR Assembler in the 
bottom box. In your project you can have assembly files, and other files. The 
program you have just written is an assembly file (.asm) and so you will have 
to add it to the project. Right click on Assembly Files in the Project Window 
and choose Add File. Find your original saved LEDon.asm and select it. You 
should now see your file in the Project Window. Now press F7 or go to Project 
--> Assemble and your file will be assembled. Hopefully your file should 
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assemble with no errors. If errors are produced, you will find it helpful to 
examine the List File (*.lst). Load this up in Notepad, or some other text editor 
and scan the document for errors. In this simple program, it is probably nothing 
more than a spelling mistake. Correct any problems and then move on to 
testing. 

Testing 

There are three main ways to test your program" 

1. Simulating 
2. Emulating 
3. Programming an actual AVR and putting it in a circuit 

The first of these, simulating, is entirely software based. A piece of software 
pretends it's an AVR and shows you how it thinks the program would run, 
showing you how the registers are changing etc. You can also pretend to give it 
inputs by manually changing the numbers in PINB etc. You can get a good idea 
of whether or not the key concepts behind your program will work with this 
kind of testing, but other real-word factors such as button-bounce cannot be 
tested. Atmel's AVR Simulator comes with AVR Studio. 

AVR Studio - s imulat ing 

We will now have a go at simulating the LEDon program. After you assemble 
your .asm file, double click on it in the Project Window to open it. Some of the 
buttons at the top of the screen should now become active. There are three key 
buttons involved in stepping through your program. The most useful one of 
these, ~ i ,  is called Trace Into or Step Into. This runs the current line of your 
program/Pressing this once will begin the simulation and should highlight the 
first line of your program (rjlnp Init). You can use this button (or its 
shortcut F l l )  to step through your program. We will see the importance of the 
other stepping buttons when we look at subroutines later on in the book. In 
order for this simulation to tell us anything useful, we need to look at how the 
I/O registers are changing (in particular bit 0 of PortB). This can be done by 
going to View ~ New IO View. You can see that the I/O registers have been 
grouped into categories. Expand the PortB category and this shows you the 
PortB, DDRB and PinB registers. You can also view the working registers by 
going to View ~ Registers. We will be watching R16 in particular, as this is 
temp. Another useful shortcut is the reset button, ~ (Shift + Fh). 

Continue stepping through your program. Notice how temp gets cleared to 
00, PortB and PortD are also cleared to 00, then temp is loaded with 0xFF 
(0bl 111111), which is then loaded in DDRB and DDRD. Then (crucially) 
PortB, bit 0 is set, as shown by the tick in the appropriate box. You may notice 
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how this will automatically set PinB, bit 0 as well. Remember the difference 
between PortB and PinB - PortB is a register representing what you wish to 
output through the port, and PinB represents the actual, physical state of those 
pins. For example, you could try to make an input high when the pin is acci- 
dentally shorted to ground-  PortB would have that bit high whilst PinB would 
show the bit low, as the pin was being pulled low. 

Emulating 

Emulating can be far more helpful in pinning down bugs, and gives you a much 
more visual indication of the working of the program. This allows you to 
connect a probe with an end that looks like an AVR chip to your computer. The 
emulator software then makes the probe behave exactly like an AVR chip 
running your program. Putting this probe into your circuit should give you the 
same result as putting a real AVR in, the great difference being that you can step 
through the program slowly, and see the inner workings (registers etc.) 
changing. In this way you are testing the program and the circuit board, and the 
way they work together. Unfortunately, emulators can be expensive - a sample 
emulator is Atmel's ICE (In-Circuit Emulator). 

If you don't have an emulator, or after you've finished emulating, you will 
have to program a real AVR chip and put it in your circuit or testing board. One 
of the great benefits of AVRs is the Flash memory which allows you to keep 
reprogramming the same chip, so you can quite happily program your AVR, see 
if it works, make some program adjustments, and then program it again with the 
new, improved code. 

For these latter two testing methods you obviously need some sort of circuit 
or development board. If you are making your own circuit, you will need to 
ensure certain pins on the chip are wired up correctly. We will now examine 
how this is done. 

Hardware 

Figure 2.2 shows the 1200 chip. You will already be familiar with the PBx and 
PDx pins; however, there are other pins with specific functions. VCC is the 
positive supply pin, and in the case of the 1200 chip needs between 2.7 and 
6.0 V. The allowed voltage range depends on the chip, but a value between 4 and 
5 V is generally safe. GND is the ground (0 V) pin. There is also a Reset pin. 
The bar over the top means that it is active low, in other words to make the AVR 
reset you need to make this pin low (for at least 50 ns). Therefore, if we wanted 
a reset button, we could use an arrangement similar to that shown in Figure 2.3. 

The power supply to the circuit is likely to take a short time to stabilize once 
first turned on, and crystal oscillators need a 'warm-up' time before they 
assume regular oscillations, and so it is necessary to make the AVR wait a short 
while after the power is turned on before running the program. Fortunately, this 
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little delay is built into the AVR (lasting about 11 ms); however, if you have a 
particularly bad power supply or oscillator, and want to extend the length of this 
'groggy morning feeling' delay you can do so with a circuit such as that shown 
in Figure 2.4. Increase the value of C 1 to increase the delay. 
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Finally, pins XTAL1 and XTAL2, as their names suggest, are wired to a 
crystal (or ceramic oscillator) which is going to provide the AVR with the 
steady pulse it needs in order to know when to move on to the next instruction. 
The faster the crystal, the faster the AVR will run through the program, though 
there are maximum frequencies for different models. This maximum is gener- 
ally between 4 and 8 MHz, though the 1200 we are using in this chapter can run 
at speeds up to 12 MHz! Note that on some AVRs (in particular the Tiny AVRs 
and the 1200), there is a built-in oscillator of 1 MHz, which means you don't 
need a crystal. This internal oscillator is based on a resistor-capacitor arrange- 
ment, and is therefore less accurate and more susceptible to temperature varia- 
tions etc.; however, if timing accuracy isn't an issue, it is handy to free up space 
on the circuit board and just use the internal oscillator. Figure 2.5 shows how 
you would wire up a crystal (or ceramic oscillator) to the two XTAL pins. 
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If you would like to synchronize your AVR with another device, or already 
have a clock line with high-speed oscillations on it, you may want to simply 
feed the AVR with an external oscillator signal. To do this, connect the oscil- 
lator signal to XTAL1, and leave XTAL2 unconnected. Figure 2.6 shows how 
using an HC (high-speed CMOS) buffer you can synchronize two AVR chips. 

1 2 U2  
U 1 

- - - - - . . - -  
12 X T A L I ~  PB0/AINO 

PB0/AIN0 ~ XTAL1 HC Buffer XTAL2 > PB1/AIN1 
PBI/AIN1 > XTAL2 RESET PB2 
PB2 RESET CRYSTAL PB3 - . ~  
PB3 PDO PB4 
PB4 PD0 -.-tr ~ PD1 PB5 
PS5 PD1 - ~ P o ~ r r 0  pes 
PB6 PD2/INT0 C 2  T "  PD3 PeT - - - -  
P.7 p~ - -T -  22pF-'V" 22pF T "  po4,To 

PD4/T0 / / - -.-.---, PD5 C) / / 
~.T90S 1200 o o 

A ~ 2 0 0  

Figure 2.6 

AVR Stud io  - p r o g r a m m i n g  

In order to test a programmed AVR, you will need a circuit board or develop- 
ment board. The simplest solution is to make up the circuit boards as you need 
them, but you may find it quicker to construct your own development board to 
cover a number of the projects covered in this book. The required circuit 
diagram for the LEDon program is shown in Figure 2.7. 
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If you have a development board, you may need to check how the LEDs are 
wired up. We have been assuming the pins will source the LED's current (i.e. 
turn the pin high to turn on the LED). If your circuit board is configured such 
that the pin is sinking the LED's current, you will have to make changes to the 
software. In this case, a 0 will turn on the LED and a 1 will turn off the LED. 
Therefore, instead of starting with all of PortB set to 0 at the start of the Init 
section, you will want to move 0bl 1111111 into PortB (to turn off all the 
LEDs). You will also have to clear PortB, bit 0 rather than set it, in order to turn 
on the LED. This can be done using the ebi instruction in place of sbi. 

Also note that although the program has been written with the 1200 in mind, 
by choosing the simplest model AVR we have made the program compatible 
with all other models (assuming they have sufficient I/O pins). Therefore if you 
have an 8515 (which comes with some development kits), simply change the 
.device and .include lines in your program and it should work. 

We will now program the device using the STK500 Starter Kit. The steps 
required with the other types of programmer should not vary too much from 
these. To program your device, place the chip into the appropriate socket in the 
programming board. You many need to change the jumper cables to select the 
correct chip. In AVR Studio select Tools ~ STKS00, and choose the relevant 
device (at90s 1200). You will be programming the Flash Program memory. If 
you've just been simulating and your program is still in the simulator memory, 
you can tick the box labelled Use Current  Simulator/Emulator Flash 
Memory, and then hit Program. If the program isn't in the Simulator/Emulator 
Memory, just load the program, assemble it, start the simulator, and it will be. 

Fuse bits 

You may notice some other tabs in the programming window. The one labelled 
fuses enables you to control some of the hardware characteristics of the AVR. 
These fuses vary between different models. For the 1200 we have two fuses 
available. RCEN should be set if you are using the internal RC oscillator as 
your clock. If you are using an external clock such as a crystal (as indeed we 
are in this project), this fuse bit should be clear. The other fuse is SPIEN, Serial 
Program Downloading, which allows you to read the program back off the chip. 
If you want to keep your program to yourself and don't want others to be able 
to read it off the chip, make sure this fuse bit is clear. 

All this just to see an LED turn on may seem a bit of an anticlimax, but there 
are greater things to come! 

Programs B and C: push button 

�9 Testing inputs 
�9 Controlling outputs 



32 Basic operations with AT90S1200 and TINY12 

We will now examine how to test inputs and use this to control an output. Again, 
the project will be quite s imple-  a push button and an LIED which turns on 
when the button is pressed, and turns off when it is released. There are two main 
ways in which we can test an input: 

1. Test a particular bit in PINx using the sbic or sbis instructions 
2. Read the entire number from PINx into a register using the in instruction 

The push button will be connected between PD0 and 0V, and the LED to PB0. 
The flowchart is shown in Figure 1.3, and the circuit diagram in Figure 2.8. 
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You should be able to write the Init section yourself, noting that as there is 
no external pull-up resistor shown in the circuit diagram, we need to enable the 
internal pull-up for PD0. The beginning of the program will look at testing to 
see if the push button has been pressed. We have two instructions at our 
disposal: 

sbic ioreg, bit ; 

This tests a bit in a I/O register and skips the following line if the bit is clear. 
Similarly 

sbis ioreg, bit ; 

tests a bit in a I/O register and skips the following line if the bit is set. Note that 
like sbi and cbi, these two instructions operate only on I/O registers numbered 
between 0 and 31 ($0-$1F). Fortunately, PIND, the register we will be testing, 
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is one of these registers (number $10). So to test our push button (which makes 
pin PD0 high when it is pressed), we write: 

sbis PinD, 0 ; tests the push button 

This instruction will make the AVR skip the next instruction if PD0 is high. 
Therefore the line below this one is only executed if the button is not pressed. 
This line should then turn off the LED, and so we will make the AVRjump to a 
section labelled LEDoff: 

rjmp LEDoff ; jumps to the section labelled LEDoff 

After this line is an instruction which is executed only when the button is 
pressed. This line should therefore turn the LED on, and we can use the same 
instruction as last time. 

EXERCISE 2.1 Write the two instructions which turn the LED on, and then loop 
back to Start to test the button again. 

This leaves us with the section labelled LEDoff. 

EXERCISE 2.2 

back to Start. 
Write the two instructions which turn the LED off, and then loop 

You have now finished writing the program, and can double check you have 
everything correct by looking at Program B in Appendix J. You can then go 
through the steps given for testing and programming Program A. While you are 
doing your simulation, you can simulate the button being pressed by simply 
checking the box for PIND, bit 0 in the I/O registers window. 

Sometimes it helps to step back from the problem and look at it in a different 
light. Instead of looking at the button and LED as separate bits in the two ports, 
let's look at them with respect to how they affect the entire number in the ports. 
When the push button is pressed, the number in PinD is 0b00000000, and in this 
case we want the LED to turn on (i.e. make the number in PortB 0b00000000). 
When the push button isn't pressed, PinD is 0b00000001 and thus we want 
PortB to be 0b00000001. So instead of testing using the individual bits we are 
going to use the entire number held in the file register. The entire program 
merely involves moving the number that is in PinD into PortB. This cannot be 
done directly, and so we will first have to read the number out of PinD using the 
following instruction: 

in register, ioreg ; 

This copies the number from an I/0 register into a working register. To move 
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the number from a working register back out to an I/O register, we use the out 
instruction. The entire program can therefore consist of: 

Start: in temp, PinD ; reads button 
out PortB, temp ; controls LED 
rjmp Start ; loops back 

This shorter program is shown as Program C. 

Seven segment displays and indirect addressing 

Using an AVR to control seven segment displays rather than using a separate 
decoder chip allows you to display whatever you want on them. Obviously all 
the numbers can be displayed, but also most letters: A, b, c, C, d, E, F, G, h, H, 
i, I, J, 1, L, n, o, O, P, r, S, t, u, U, y and Z. 

The pins of the seven segment display should all be connected to the same 
port, in any order (this may make PCB design easier). The spare bit may be used 
for the dot on the display. Make a note of which segments (a, b, c etc.) are 
connected to which bits. The segments on a seven segment display are labelled 
as shown in Figure 2.9. 

a 

b 

e C 

Figure 2.9 

Example 2.1 Port B Bit 7 = d, Bit 6 = a, Bit 5 = c, Bit 4 = g, Bit 3 = b, Bit 2 
= f, and Bit 1 = e. I have assigned the letters to bits in a random order to illus- 
trate it doesn't matter how you wire them up. Sometimes you will find that due 
to physical PCB restrictions there are some configurations that are easier or 
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more compact than others. The software is easy to change - the hardware 
normally less so. 

If the display is wired up as described in Example 2.1, the number to be moved 
into Port B when something is to be displayed should be in the format daegbfe- 
(it doesn't matter what bit 0 is as it isn't connected to the display), where the 
value associated with each letter corresponds to the required state of the pin 
going to that particular segment. 

So if you are using a common cathode display (i.e. make the segments high 
for them to turn o n -  see Figure 2.10), and you want to display (for example) 
the letter A, you would turn on segments: a, b, c, e, f and g. 
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Given the situation in Example 2.1, where the segments are arranged 
dacgbfe- along Port B, the number to be moved into PortB to display an A 
would be 0b01111110. Bit 0 has been made 0, as it is not connected to the 
display. 

Example 2.2 If the segments of a common cathode display are arranged 
dacgbfe- along Port B, what number should be moved into PortB, to display the 
letter C, and the letter E? 
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The letter C requires segments a, d, e and f, so the number to be moved into Port 
B would be 0bll000110. The letter E requires segments a, d, e, f and g so the 
number to be moved into Port B would be 0bll010110. 

EXERCISE 2.3 If the segments are arranged abcdefg- along Port B, what 
number should be moved into PortB to display the numbers 0, 1, 2, 3, 4, 5, 6, 
7, 8, 9, A, b, c, d, E and E 

The process of converting a number into a seven segment code can be carried 
out in various ways, but by far the simplest involves using a look-up table. The 
key idea behind a look-up table is indirect addressing. So far we have been 
dealing with direct addressing, i.e. if we want to read a number from register 
number 4, we simply read register number 4. Indirect addressing involves 
reading a number from register number X, where X is given in a different 
register, called Z (the 2-byte register spread over R30 and R31). 

It's a bit like sending a letter, where the letter is the contents of a working 
register (R0-R31), and the address is given by the number in Z. 

Example 2.3 Move the number 00 into working registers numbers R0 to 1129. 

Rather than writing: 

clr R0 ; clears R0 
clr R1 ; clears R1 
clr R2 ; clears R2 
etc. 
clr R29 ; clears R29 

we can use indirect addressing to complete the job in fewer lines. The first 
address we want to write to is R0 (address 0), so we should move 00 into Z 
(making 0 the address on the letter). Z, remember, is spread over both ZL and 
ZH (the higher and lower bytes of Z), so we need to clear them both: 

clr ZL ; clears Z L  
clr Z H  ; clears Z H  

We then need to set up a register with the number 0 so we can send it 'by post' 
to the other registers. We already have a register with a 0 (ZH), so we will use 
that. 

st register, Z ; 

This indirectly stores (sends) the value in register to the address pointed to by 
Z. Therefore the instruction: 



Basic operations with AT90S1200 and TINY12 37 

st ZH, Z 

sends the number in ZH (0) to the address given by Z (also 0), and so effec- 
tively clears R0. We now want to clear RI ,  and so we simply increment Z to 
point to address 01 (i.e. R1). The program then loops back to cycle through all 
the registers, clearing them all in far fewer lines that if we were using direct 
addressing. All we need to do is test to see when ZL reaches 30, as this is past 
the highest address we wish to clear. 

How do we tell when ZL reaches 30? We subtract 30 from it and see whether 
or not the result is zero. If ZL is 30, then when we subtract 30 from it the result 
will be 0. We don't want to actually subtract 30 from ZL, or it will start going 
backwards fast! Instead we use one of the compare instructions: 

cp register, register ; 

This 'compares'  the number in one register with that in another (actually 
subtracts one register from the other whilst leaving both unchanged). We then 
need to see if the result is zero. We can do this by looking at the zeroflag. There 
are a number of flags held in the SREG register ($3F), these are automatically 
set and cleared depending on the result of certain operations. The zero flag is 
set when the result of an operation is zero. There are two ways to test the zero 
flag: 

brbs label, bit 

This branches to another part of the program if a bit in SREG is set (the zero 
flag is bit 1, and so bit would have to be a 1). Note that the label has to be within 
63 instructions of the original instruction. Similarly, 

brbc label, bit 

This branches to another part of the program if a bit in SREG is clear. Here is 
where some of the instruction redundancy comes in, because as well as this 
general instruction for testing a bit in SREG, each bit has its own particular 
instruction. In this case, for the zero flag: 

breq label 

which stands for branch if equal (more specifically, branch if the zero flag is 
set). The opposite of this is: 

brne label 

which stands for branch if not equal (more specifically, branch if the zero flag 
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is clear). The complete set of redundant/non-critical instructions is shown in 
Appendix C, along with their equivalent instructions. To compare a register 
with a number (rather than another register), we use the instruction: 

cpi register, number ; 

Please note that this only works on registers R16-R31, but as ZL is R30 we are 
all right. The complete set of instructions to clear registers R0 to R29 is there- 
fore: 

clr ZL 
clr ZH 

ClearLoop: st ZH, Z 
inc ZL 
cpi ZL, 30 
brne ClearLoop 

; clears ZL 
; clears ZH 
; clears indirect address 
; moves on to next address 
; compares ZL with 30 
; branches to ClearLoop if ZL ~ 30 

This six line instruction set is useful to put in the Init subroutine to systemat- 
ically clear a large number of file registers. You can adjust the starting and 
finishing addresses by changing the initial value of ZL and the final value you 
are testing for; note, however, that you don't want to clear ZL in the loop (i.e. 
don't go past 30) because otherwise you will be stuck in an endless loop (think 
about it). 

EXERCISE 2.4 Challenger What six lines will write a 0 to R0, a 1 to R1, a 2 to 
R2 etc. all the way to a 15 to R15? 

As well as writing indirectly, we can also read indirectly: 

ld register, Z ; 

This indirectly loads into register the value at the address pointed to by Z. We 
therefore have a table of numbers kept in a set of consecutive memory 
addresses, and by varying Z we can read off different values. Say, for example, 
we keep the codes for the seven segment digits 0-9 in working registers 
R20-R29. We then move 20 into Z (to 'zero' it to point at the bottom of the 
table) and then add the number we wish to convert to Z. Reading indirectly into 
temp we then get the seven segment code for that number: 

ldi ZL, 20 
add ZL, digit 
ld temp, Z 
out PortB, temp 

; zeros ZL to R20 
; adds digit to ZL 
; reads Rx into temp 
; outputs temp to Port B 

The above code translates the number in digit into a seven segment code which 
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is then outputted through Port B. Note that you will have to write the code to 
the registers in the first place: 

ldi R20, 0bl  I 111100 ; code for 0 
ldi R21, 0b01100000 ; code for 1 
etc. 
ldi R29, 0 b l l l l 0 1 1 0  ; code for 9 

Note that using working registers for this purpose is unusual and indeed 
wasteful, but as there is no other SRAM on the 1200 we have no choice. On 
other chips that do have SRAM, we can use that for look-up tables. 
Furthermore, on other chips there is also an instruction lpm, which allows you 
to use the Program Memory for look-up tables as well. More on this in the 
Logic Gate Simulator project on page 67. 

Programs D and E: counter 

�9 Testing inputs 
�9 Seven segment displays 

Our next project will be a counter. It will count the number of times a push 
button is pressed, from 0 to 9. After 10 counts (when it passes 9), the counter 
should reset. The seven segment display will be connected to pins PB0 to PB6, 
and the push button will go to PD0. Figure 2.11 shows the circuit diagram, pay 
particular attention to how the outputs to the seven segment display are 
arranged. The flowchart is shown in Figure 2.12. 

You can write the Init section yourself, remembering the pull-up on the push 
button. Start PortB with the code for a 0 on the display. We will be using a 
register called Counter  to keep track of the counts, you should define this in 
the declarations section as R17. The reason we have assigned it R17 is that, as 
you may remember, registers R16-R31 are the 'executive assistants ' -  more 
powerful registers capable of a wider range of operations. We therefore tend to 
fill up registers from R16 upwards, and then use R0-R15 if we run out. In the 
Init section, set up registers R20 to R29 to hold the seven segment code for 
numbers 0 to 9. (HINT: If you do this before setting up PortB, you can move 
R20 straight into PortB to initialize it. Also remember to clear Counter in the 
Init section.) 

EXERCISE 2.5 What three lines will test the push button, loop back and test it 
again if it isn't pressed? If it is pressed it should jump out of the loop and add 
one to Counter? 

Then we need to see whether Counter  has exceeded 9. We use cpi to compare, 
and brne to skip if they are not equal. If they are equal, Counter must be reset 
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Figure 2.12 

to 0. A useful trick with brne and similar instructions: it is often the case that 
rather than jumping somewhere exotic when the results aren't equal, we simply 
want to skip the next instruction (as we do with the sbis and sbic instructions). 
To do this with branch instructions, write PC+2 instead of a label-  this skips 1 
instruction (i.e. jumps forward 2 instructions). PC stands for Program Counter 
which is described in more detail on page 54. 

EXERCISE 2.6 What three lines will test if Counter is equal to 10 and reset it 
if it is? You may want to use the PC+2 trick. 

Now we need to display the value in Counter. Do this by setting ZL to point to 
R20 and adding Counter to it, as described already. 

EXERCISE 2.7 What five lines will display the value in Counter through Port 
B, and then loop back to Start? 
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The program so far is shown as Program D. It is recommended that you actu- 
ally build this project. Try it out and you will spot the major flaw in the project. 

The basic problem is that we are not waiting for the button to be released. 
This means that Counter is being incremented for the entire duration of the 
button being pressed. If we imagine that the button is held down for 0.1 s, and 
the crystal frequency is 4 MHz, one trip around the program takes about 14 
clock cycles, and so Counter is incremented about 4 000 000/(14 x 10)= 
28 600 times for every press of the button! Effectively what we have is a pretty 
good random number generator (as an aside, random number generators are 
quite hard to make without some form of human input-  computers are not good 
at being random). You could make this into an electronic dice project, but we 
will return to our original aim of a reliable counter. 

Figure 2.13 shows the new flowchart. The necessary adjustment can be made 
at the end to wait for the button to be released before looping back to start. 

EXERCISE 2.8 Write the two new lines needed to solve the problem, and show 
where they are to be added. (HINT: you will need to give this loop a name.) 

Try out this new program (Program E), and you may notice a lingering problem, 
depending on the quality of your push button. You should see that the counter 
counts up in jumps when the push button in pressed (e.g. jumping up from 1 to 
4). This is due to a problem called button bounce. The contacts of a push button 
actually bounce together when the push button is pressed or released, as shown 
in Figure 2.14. 

In order to avoid counting one press as many, we will have to introduce a 
short delay after the button has been released before testing again. This affects 
the minimum time between counts, but a compromise must be reached. 

Example 2.4 To avoid button bounce we could wait 5 seconds after the button 
has been released before we test it again. This would mean that if we pressed 
the button 3 seconds after having pressed it before, the signal wouldn't register. 
This would stop any bounce, but means the minimum time between signals is 
excessively large. 

Example 2.5 Alternatively, to attempt to stop button bounce we could wait a 
hundred thousandth of a second after the button release before testing it again. 
The button bounce might well last longer than a hundred thousandth of a second 
so this delay would be ineffective. 

A suitable compromise might be around a tenth of a second but this will vary 
from one type of button to the next and you will have to experiment a little. In 
order to implement this technique, we will have to learn about timing, which 
brings us to the next section. 
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Timing 
If you cast your mind back to the list of I/O registers (it may help if you glance 
back at page 14), you will notice a register called TCNT0 ($32), or Timer 
Counter 0. This is an on-board timer, and will automatically count up at a spec- 
ified rate, resetting to 0 when it passes 255. We can use this to perform timing 
functions (e.g. one second delays etc.). In more advanced chips there are several 
timers, some of which are 16 bits long. The reason it is also called a 'Counter' 
is that it can also be made to count the number of signals on a specific input pin 
( P D 4 -  pin 8 in the case of the 1200). For the purposes of the immediate discus- 
sion, we will be using TCNT0 as a timer, and so I will be referring to it as 
Timer 0, or T/C0 for the sake of brevity. 

Before we can use Timer 0, we will have to configure it properly (e.g. tell it 
to time and not count). We do this with the T/C0 Configuration Register: 
TCCR0 ($33). In this register, each bit controls a certain aspect of the func- 
tioning ofT/C0. In the case of the 1200, only bits 0-2 are used: 

T C C R 0 -  T/C0 Control Register ($33) 

bit no. 7 6 5 4 3 2 1 0 
bit name . . . . .  CS02 CS01 CS00 

4-h  ' 
000 STOP! T/C0 is stopped 

001 T/C0 counts at the clock speed (CK) 

010 T/C0 counts at CK/8 

011 T/C0 counts at CK/64 

100 T/C0 counts at CK/256 

101 T/C0 counts at CK/1024 

110 T/C0 counts on falling edge of TO pin 

111 T/C0 counts on rising edge of TO pin 
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Bits 3-7 have no purpose, but by setting bits 0-2 in a certain way, we can make 
T/C0 behave in the way we wish. If we don't wish to use T/C0 at all, all three 
bits should be 0. If we wish to use it as a timer, we select one of the next five 
options. Finally, if we want it to count external signals (on PD4), we can choose 
one of the last two options. The options available to us when using T/C0 for 
timing are to do with the speed at which it counts up. The clock speed (CK) is 
going to be very fast indeed (a few MHz) - this is the speed of the crystal which 
you connect to the AVR - and so in order to time lengths of the order of seconds 
we are going to have to slow things down considerably. The maximum factor by 
which we can slow down Timer 0 is 1024. Therefore if I connect a crystal with 
frequency 2.4576 MHz to the chip (this is actually a popular value crystal), 
Timer 0 will count up at a frequency of 2 457 600/1024 = 2400 Hz. So even if 
we slow it down by the maximum amount, Timer 0 is still counting up 2400 
times a second. 

Example 2.6 What number should be moved into the TCCR0 register in order 
to be able to use the T/CO efficiently to eventually count the number of seconds 
which have passed? 

Bits 3 to 7 are always 0. 
Timer 0 is counting internally, at its slowest rate = CK/1024 
Hence the number to be moved into the TCCR0 register is 0b00000101. 

EXERCISE 2.9 What number should be moved into the TCCR0 register when a 
button is connected between PD4 and +5 V, and TCNT0 is to count when the 
button is pressed. 

In order to move a number into TCCR0, we have to load it into temp, and then 
use the out instruction, as with the other I/O registers. As you are unlikely to 
want to keep changing the Timer 0 settings it is a good idea to do this in the Init 
subroutine, to keep it out of the way. 

In order to time seconds and minutes, you need to perform some further 
frequency dividing yourself. We do this with what I call a marker and then any 
number of counter registers. These are working registers we use to help us with 
the timing. The basic idea is to count the number of times the value in Timer 0 
reaches a certain number. For example, in order to wait one second, we need to 
wait for Timer 0 to count up 2400 times. This is equivalent to waiting for Timer 
0 to reach 80, for a total of 30 times, because 30 x 80 = 2400. We could do this 
with any other factors of 2400 that are both less than 256. 

To test if the number in Timer 0 is 80, we use the following lines: 

out TCNT0, temp 
cpi temp, 80 
breq Equal 

; copies TCNT0 to temp 
; compares temp with 80 
; branches to Equal if temp = 80 
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This tests to see if Timer 0 is 80, and branches to Equal if it is. The problem is 
we're not always testing to see if Timer 0 is 80. The first time we are, but then 
next time round we're testing to see if Timer 0 is 160, and then 240 etc. We 
therefore have a register (which I call a marker) which we start off at 80, and 
then every time Timer 0 reaches the marker, we add another 80 to it. There isn't 
an instruction to add a number to a register, but there is one to subtract a 
number, and of course subtracting a negative number is the same as adding it. 

subi register, number ; 

This subtracts the immediate number from a register. Note the register must be 
one of  R16-R31. So far, we have managed to work out when the Timer 0 
advances by 80. We need this to happen 30 times for one second to pass. We 
take a register, move 30 into it to start with, and then subtract one from it every 
time Timer 0 reaches 80. 

dec register 

This decrements (subtracts one from) a register. When the register reaches 0 we 
know this has all happened 30 times. This all comes together below, showing 
the set of instructions required for a one second delay. 

ldi Count30, 30 
ldi Mark80, 80 

; starts up the counter with 30 
; starts up the marker with 80 

TimeLoop: out TCNT0, temp 
cp temp, Mark80 
brne TimeLoop 

; reads Timer 0 into temp 
; compares temp with Mark80 
; if not equal keeps looping 

subi Mark80, -80 ; adds 80 to Mark80 

dec Count30 
brne TimeLoop 

; subtracts one from Count30 
; if not zero keeps looping 

The first two instructions load up the counter and marker registers with the 
correct values. Then TCNT0 is copied into temp, this is then compared with the 
marker. If they are not equal, the program keeps looping back to TimeLoop. If 
they are equal it then adds 80 to the marker, subtracts one from the counter, 
looping back to TimeLoop if it isn't zero. Note that you will have to define 
Mark80 and Count30 in the declarations section, and that they will have to be 
one of R16-R31. 
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Program F: chaser 

�9 Timing 
�9 Reading inputs 
Q Controlling outputs 

The next example project will be a 'chaser' which consists of a row of LEDs. 
The LEDs are turned on in turn to give a chasing pattern. The speed of this 
chase will be controlled by two buttons - one to speed it up, the other to slow 
it down. The default speed will be 0.5 second per LED, going down to 0.1 
second and up to 1 second. 

The LEDs will be connected to Port B, and the buttons to PD0 and PD 1. The 
flowchart and circuit diagram are shown in Figures 2.15 and 2.16 respectively. 

The set-up box of the flowchart should be fairly straightforward, though 
remember that you may want to configure TCCR0 in the Init section, and that 
as we are timing the order of a second, we will want to use TCNT0 as a timer, 
slowed down by its maximum. Note also that PD0 and PD 1 will require pull- 
ups, and that PortB should be initialized with one LED on (say, for example, 
PB0). 

It is now worth giving a little thought to how we are going to have a time 
delay which can vary between 0.1 second and 1 second. The shortest time delay, 
0.1 second, can be timed using a marker of 240 (2400/240 = 10 Hz), assuming 
the Timer 0 is counting at CK/1024 and a 2.4576 MHz crystal is being used. 
Then the counter can be varied between 1 and l0 to vary the overall time 
between 0.1 and 1 second. You may want to think about this a little. We will 
therefore have a marker register Mark240, and a variable counter register called 
Counter. Counter  will be normally reset to 5 (for 0.5 second), but can be reset 
to other values given by Speed. Don't forget to define these registers at the 
declarations section at the top of the program). 

Looking back at our flowchart, the first box after the set-up looks at the 
'slow-down button'. We shall make the button at PD0 the 'slow-down button', 
and test this using the sbic instruction. If the button is not pressed (i.e. the pin 
is high), the next instruction will be executed, and this skips to a section where 
we test the 'speed-up button' button (call this UpTest). 

If the button is pressed, we want to add one to Speed (slow down the chase). 
This can be done using the following instruction: 

inc register 

This increments (adds one to) a register. We don't want the delay to grow longer 
than 1 second, and so we must check that Speed has not exceeded 10 (i.e. if it 
is 11 it has gone too far). We do this with the compare immediate instruction 
already introduced, cpi. If Speed is not equal to 11, we can then branch to 
ReleaseDown and wait for the button to be released. If it is equal to 11 we have 
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Figure 2.16 

to subtract one from it (using the dec instruction). The first few lines of the 
program are therefore: 

Start" sbic PinD, 0 
r jmp UpTest 

; checks slow-down button 
; not pressed, jumps 

inc Speed 
cpi Speed, 11 
brne ReleaseDown 
dec Speed 

ReleaseDown: 

; slows down time 
; has Speed reached 11? 
; jumps to ReleaseDown if not equal 
; subtracts one from Speed 
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sbis PinD, 0 ; waits for button to be released 
rjmp ReleaseDown- ; 

In UpTest, we do the same with the 'speed-up button', PD1, and instead of 
jumping to UpTest, we jump to the next section which we will call Timer. If 
the speed-up button is pressed we need to decrement Speed, and instead of 
testing to see if it has reached 11, we test to see if it has reached 0 (and incre- 
ment it if it has). We could use cpi Speed, 0, but this line is unnecessary as 
the zero flag will be triggered by the result of the dec instruction, and so if we 
decrement Speed and the result is zero, we can use the brne in the same way as 
before. 

EXERCISE 2.10 Write the seven lines which follow those given above. 

The next section, called Timer, has to check to see if the set time has passed, 
and return to the beginning i f  the time hasn't passed. This means the timing 
routine must loop back to Start rather than stay in its own loop. 

We will also put in the lines which set up the marker and counter registers in 
the Init section. Mark240 should initially be loaded with 240; Speed and 
Counter should be loaded with 5. This means we can go straight into the 
counting loop. 

Timer: in 
cp 
brne 

temp, TCNT0 ; reads Timer 0 into temp 
temp, Mark240 ; compares temp with Mark240 
Start ; if not equal loops back to Start 

subi Mark240,-240 ; adds 240 to Mark240 

dec Counter 
brne Start 

; subtracts one from Counter 
; if not zero loops back to Start 

This should be familiar from the last section on timing. Note that instead of 
looping back to Timer, it loops back to Start. You may find, however, that you 
can reduce button bounce by looping back to Timer rather than Start  in the 
0.1 second loop. This means the buttons will only be tested once every 0.1 
second, which means that a button will have to be pressed for at least 0.1 
second. After the total time has passed, we need to chase the LEDs (i.e. rotate 
the pattern), and also reset the Counter  register with the value in Speed. To do 
this we use: 

mov regl,  reg2 ; 

This moves (copies) the number from reg2 into regl. 

EXERCISE 2.11 What one line resets Counter  with the value in Speed? 
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To rotate the pattern of LEDs we have a number of rotating instructions at our 
disposal: 

asr register ; arithmetic shift right 
lsr register ; logical shift right 
lsl register ; logical shift left 
ror register ; rotate right 
rol register ; rotate left 

The arithmetic shift right involves shifting all the bits to the right, whilst 
keeping bit 7 the same and pushing bit 0 into the carry flag. The carry flag is a 
flag in SREG like the zero flag. The logical shift right shifts all the bits to the 
right, and moves 0 into bit 7. The rotate right rotates through the carry flag (i.e. 
bit 7 is loaded with the carry flag, and bit 0 is loaded into the carry flag). This 
is summarized in Figure 2.17. 

Figure 2.17 

As we rotate the pattern along, we don't want any l s appearing at the ends, 
because this would turn on edge LEDs out of turn, which would then propagate 
down the row and ruin the pattern. It would therefore seem that lsl or lsr is 
appropriate. For the sake of argument, we will pick lsl, to rotate the pattern to 
the left. We cannot apply these rotating instructions directly to PortB, so we 
have to read in the pattern to temp, rotate temp, and then output back to PortB. 
Before we output it to PortB, we have to see whether or not we've gone too far 
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(rotated eight times), in which case we need to reset PortB back to its initial 
value (all off except PB0). We can do this by monitoring the carry flag, which 
will be high if we rotate a high bit off the end (a quick glance at Figure 2.17 
should confirm this). The instruction for this is: 

brcc label 

This branches to label if the carry flag is clear. Therefore the lines we need are: 

in temp, PortB 
lsl temp 
brcc PC+2 
ldi temp, 0b00000001 

; reads in current state 
; rotates to the left 
; checks Carry, skip if clear 
; resets to PB0 on, others off 

out PortB, temp ; outputs to PortB 
rjmp Start ; loops back to Start 

You will notice that if the carry flag is clear, we skip the next instruction using 
the PC+2 trick. The program is shown in its entirety as Program F in Appendix 
J. 

You can go through and assemble this, and simulate it. For the simulation, 
you will notice that stepping through the entire program waiting for Timer 0 to 
count up will take a long time. For this reason, ways to run through parts of the 
program at high speed are on offer. For example, if you right click on a line in 
theprogram (when in simulation mode), you are given the option to 'Run to 
Cursor' (Ctrl + F10). This will run to where you have clicked at high speed (not 
quite real time, but close). 

So far we have covered quite a few instructions; it is important to keep track 
of all of them, so you have them at your fingertips. Even if you can't remember 
the exact instruction name (you can look these up in Appendix C), you should 
be familiar with what instructions are available. 

REVISION EXERCISE What do the following do: sbi, cbi, sbic, sbis, rjmp, ldi, st, 
ld, clr, ser, in, out, cp, cpi, brbs, brbc, breq, brne, brcc, subi, dec, inc, mov, 
asr, lsr, lsl, ror and rol? (Answers in Appendix D.) 

Timing without a timer? 

Sometimes we will want to use the TCNT0 for other purposes (such as counting 
signals on T0/PD4), and so we will now look at timing without the use of this 
timer. Each instruction takes a specific amount of time, so through the use of care- 
fully constructed loops we can insert delays which are just as accurate as with 
Timer 0. The only drawback of this is that the loop cannot be interrupted (say, if 
a button is pressed), unlike the Timer 0, which will keep counting regardless. 
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The overall idea is to find the number of clock cycles we need to waste and 
count down from this value to 0. The problem lies when the number is greater 
than 255 (which is the case almost all the time). In this case we need to 
somehow split the number over a number of registers, and then cascade them. 
We decrement the lowest byte until it goes from 00 to FF (setting the carry flag 
as it does so), and then decrement the next highest byte etc. 

Example 2. 7 Higher byte Lower byte Carry flag? 
0xlA 0x04 no 
0 x l A  0x03 no 
0 x l A  0x02 no 
0xlA 0x01 no 
0 x l A  0x00 no 

( - "  0xlA W"" 0xFF YES (so decrements upper byte) 
0x19 % 0xFF no 
0x19 0xFE etc. 

The first step is to work out how many instruction cycles the time delay 
requires. For example, to wait one second with a 4 MHz crystal, we need to 
'kill' 4 million clock cycles. The loop we will write will take 'x' instruction 
cycles, where x is given in Table 2.1. 

Table 2.1 

Length of time with 4 MHz clock With 2.4576 MHz  clock 

3 0-63 lus 0-102 laS 
4 64 las-16 ms 102 las-26 ms 
5 16 ms-4.1 seconds 26 ms-6.7 seconds 
6 4.2 seconds- 17 minutes 6.7 seconds-27 minutes 
7 17 minutes-74 hours 27 minutes-120 hours 

We are timing one second, which means x = 5. We therefore divide 4 000 000 
by 5, getting in this case 800 000. We convert this number to hexadecimal, 
getting 0xC3500. Write this number with an even number of digits (i.e. add a 
leading 0 if there are an odd number of digits), and then split it up into groups 
of two digits. For example, our values are 0x00, 0x35 and 0x0C. 

At the start of the delay in the program we put these numbers into file regis- 
ters, note the order. 

ldi Delayl ,  0x00 ; 
ldi Delay2, 0x35 ; 
ldi Delay3, 0x0C ; 
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The delay itself consists of just one line per delay register plus one at the end 
(i.e. in our case four lines). To help us achieve such a short loop we need to use 
a new instruction: 

sbci reg, number ; 

Subtract the immediate number from a register, and also subtract 1 if the carry 
flag is set. For example: 

sbci Delay2, 0 

This effectively subtracts 1 from Delay 2 if the carry flag is set, and subtracts 0 
otherwise. Our delay loop is as follows: 

Loop: subi Delayl, 1 
sbci Delay2, 0 
sbci Delay3, 0 
brcc Loop 

; subtracts 1 from Delayl 
; subtracts 1 from Delay2 if Carry is set 
; subtracts 1 from Delay3 if Carry is set 
; loops back if Carry is clear 

When it finally skips out of the loop, one second will have passed. The first 
thing to note is that the length of the loop is five clock cycles (the branching 
instruction takes two clock cycles). You can now see where the numbers in Table 
2.1 come f r o m -  for every extra delay register you add there is an extra cycle in 
the loop. The reason we have used subi to subtract 1 instead of dec is that unlike 
subi, dec doesn't affect the carry flag. We clearly rely on the carry flag in order 
to know when to subtract from the higher bytes, and when to skip out of the 
loop. 

The program counter and subroutines 

There is an inbuilt counter, called the program counter, which tells the AVR 
what instruction to execute next. For normal instructions, the program counter 
(or PC for short) is simply incremented to point to the next instruction in the 
program. For an r jmp or brne type instruction, the number in the PC is changed 
so that the AVR will skip to somewhere else in the program. 

Example 2.8 

Start: 
039 sbi PortB, 0 ; turns on LED 
03A sbic PinD, 0 ; tests push button 
03B cbi PortB, 0 ; turns off LED 
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Loop: 
03C dec Counter ; 
03D breq PC+2 ; skips next line if 0 
03E rjmp Start ; 
03F rjmp Loop ; 

The above example segment has the program memory addresses for each 
instruction on the left-hand side in hexadecimal. Note that blank lines aren't 
given addresses, nor are labels, for they are actually labelling the address that 
follows. Looking at the behaviour of the PC in the above, it starts at 039 and 
upon completion of the sbi instruction gets incremented to 03A. Then PinD, 0 
is tested. If it is high, the PC is simply incremented to 03B, but if it is low, the 
program skips, i.e. the PC is incremented twice to 03C. The r jmp Start 
instruction moves 039 into the PC, making the program skip back to Start. This 
also sheds some light on the PC+2 trick we've used a few times already, if the 
result is 'not equal' (i.e. zero flag clear), the program adds 2 to the PC rather 
than 1, thus skipping one instruction. 

EXERCISE 2.12 In the example above, what is the effect of the instruction 
r jmp Loop on the PC? 

This now brings us to the topic of subroutines. A subroutine is a set of 
instructions within the program which you can access from anywhere in the 
program. When the subroutine is finished, the program returns and carries on 
where it left off. The key feature here is the fact that the chip has to 
remember where it was when it called the subroutine so that it can know 
where to carry on from when it returns from the subroutine. This memory is 
kept in what is known as a stack. You can think of the stack as a stack of 
papers, so when the subroutine is called, the number in the program counter 
is placed on top of the stack. When a returning instruction is reached, the top 
number on the stack is placed back in the program counter, thus the AVR 
returns to execute the instruction after the one that called the subroutine. The 
1200 has a three level stack. When a subroutine is called within a subroutine, 
the number in the PC is placed on top of the stack, pushing the previous 
number to the level below. The subsequent returning instruction will, as 
always, select the number on the top of the stack and put it into the PC. A 
three level stack means you can call a subroutine within a subroutine within 
a subroutine, but not a subroutine within a subroutine within a subroutine 
within a subroutine. This is because once you've pushed three values on to 
the stack, and you call another subroutine, hence pushing another value on to 
the stack, the bottom of the stack is lost permanently. The example in Figure 
2.18 illustrates this problem. 
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035 Sub 1" rcall Sub2 IPC �9 

Stack: 

036 ret 

037 Sub2" rcall Sub3 

038 ret 

039  Sub3" rcall Sub4 

03A ret 

03B Sub4: ret 

03C Start: rcall Sub I 

BEFORE AFTER 

035 

03C 
277 
�9 . , 

277 
�9 . , 

037 

" " ~ " ' j ~  035 
03C 
727 
�9 �9 �9 

PC" 036 -!- 1 ~ "  ??? 

Stack: ??? ~ " ??? 
??? ??? 
??? ??? 

PC" 

Stack: 

037 039 

035 " " ~ " ~ 0 3 7  
03C 035 
??? 03C 

PC: 

Stack: 

038 . ~ ? . . ~ p ,  036 

035 ??? 
777 777 
. . . . . .  

777 777 
. . . . . .  

PC: 

Stack: 

039 O3B 

037 " ~ ~ ' ~ i ~ 0 3 9  
O35 037 
03C 035 

PC: 

Stack: 
03A . ~ . . 1 ~ ,  038 
037 035 
035 ??? 
7 7 2  2 7 7  . . . . . .  

i Ball 
PC: 03B ~ 03A 

Stack" 039 037 
037 035 
035 ??? 

i i 
leC �9 0 3 c  o35 

Stack" ? ? ? ~ 03C 
?)7 777 
77) )?? 

i 

f??? 

Figure 2.18 

The instruction to call a subroutine is" 

rcall label 

Which is a relative call, and so the subroutine needs to be within 2048 instruc- 
tions of the rcall instruction. To return from a subroutine use: 
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ret 

Of course, you can call as many subroutines as you like within the same subrou- 
tine like so: 

Subl: rcall Sub2 
rcall Sub3 
rcall Sub4 
ret 

Start: rcall Subl ; 

Note that the programs so far have been upwardly compatible (this means they 
would work on more advanced types of AVR). This ceases to be strictly true 
with subroutines, and if you are developing these programs on a chip other than 
the 1200 or Tiny AVRs you will have to add the following four lines to the Init 
sec t ion-  Chapter 3 explains why: 

ldi 
out 
ldi 
out 

temp, LOW(RAMEND) ; stack pointer points to 
SPL, temp ; last RAM address 
temp, HIGH(RAMEND) ; 
SPH, temp 

The simulator button ~ is used to step over a subroutine - i.e. it runs through 
the subroutine at high speed and then moves on to the next line. The step out 

. i ~ ,  is used when the simulator pointer is in a subroutine and will make button, 
the simulator run until the return instruction is reached. 

Program G: counter v. 3.0 

�9 Debouncing inputs 
�9 Seven segment display 

Now that we know how to implement a timer, we can look back to improving 
the counter project to include debouncing features to counteract the effect of 
button bounce. The new flowchart is shown in Figure 2.19. 

We can see from the flowchart that we need to insert two identical delays 
before and after the ReleaseWait section in the program. Rather than dupli- 
cating two delays, we can have a delay subroutine that we call twice. For 
example, if we call our delay subroutine Debounee, the following would be the 
last few lines of the new program: 
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Set-up ) 

J. 

NO 

I YES 

Increment counter 

,/••Has it g o ~  E S 

I N~ 
Change display 

Wait 0.1 s 

YES 

Wait 0.1 s 

Reset counter 

Figure 2.19 
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rcall Debounce 
ReleaseWait" sbis PinD, 0 

rjmp ReleaseWait 
rcall Debounce 
rjmp Start 

; inserts required delay 
; button released? 
; no, so keeps looping 
; inserts required delay 
; yes, so loops back to start 

Finally we can write the Debounee subroutine. I like to keep my subroutines in 
the top half of the page to keep things tidy, after the rjmp Init line, but 
before the Init section itself. In this case we will use the delay without Timer 0. 

EXERCISE 2.13 How many clock cycles will it take to create a 0.1 second delay, 
given a 4 MHz crystal? Convert this number into hexadecimal, and split it up 
over a number of bytes. What should the initial values of the delay registers be? 

EXERCISE 2.14 
subroutine. 

Challenge/Write the eight lines that make up the Debounee 

You must also remember to define the three new registers you have added. With 
R20-R29 taken up by the seven segment code registers, and R30,31 belonging 
to ZL and ZH, you may think you've run out of useful room, and may have to 
use the less versatile R0-R15. However, notice that while in the Debounee 
subroutine, you are not using the temp register. You could therefore use temp 
instead of Delayl. Either define Delayl as R16 (there is nothing strictly wrong 
with giving a register two different names), or as this is potentially confusing 
you may prefer to scrap the flame Delayl and use temp instead in the 
Debounee subroutine. Try this program out and see if you've eliminated the 
effect of the button bounce. Can you make the time delay smaller? What is the 
minimum time delay needed for reliable performance? 

Program H: traffic lights 
�9 Timing without Timer 0 
�9 Toggling outputs 

Our next project will be a traffic lights controller. There will be a set of traffic 
lights for motorists (green, amber and red), and a set of lights for pedestrians (red 
and green) with a yellow WAIT light as well. There will also be a button for pedes- 
trians to press when they wish to cross the road. There will be two timing opera- 
tions needed for the traffic lights. We will be monitoring the time between button 
presses as there will be a minimum time allowed between each time the traffic can 
be stopped (as is the case with real pedestrian crossings). As well as this, we will 
need to measure the length of time the lights stay on, and blinking. We will use the 
Timer 0 to control the minimum time between button presses (which we'll set to 
25 seconds), and use the 'Timerless' method just introduced for all other timing. 
The circuit diagram is shown in Figure 2.20, and the flowchart in Figure 2.21. 
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Figure 2.21 

Set-up ] 

"1 
Motorists: Green 
Pedestrians: Red 

k., 

Is button ~ NO 
pressed? 

< ~ 2 5  seconds since ~ NO 
last press? j J  

YES 

Motorists: Amber 
Pedestrians: Red 

. . . . . . .  

I 
Wait 4 seconds 

. . . . . .  i . . . . . . . . . .  

Motorists: Red 
Pedestrians: Green 

, , 

Wait 8 seconds 

I 
Motorists: Amber flashing 

Pedestrians: Green flashing 

. . . .  l, 

Wait 4 seconds 
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You can write the Init section yourself, noting that PD0 requires an internal 
pull-up. Set up TCNT0 to count at CK/1024. 

The first two lines get the LEDs in the correct state with the red pedestrian 
light on, as well as the motorists' green. 

EX~RCISE 2.15 What two lines will do this? 

We need to perform some sort of timing during this initial loop so that while 
it is waiting for the button, it can also be timing out the necessary 25 seconds. 
This will be taken care of by a subroutine called Timer which we will write 
later. So after these two first lines insert: 

rcall Timer ; keeps timing 

In this subroutine we will use the T bit in SREG, a temporary bit you can use 
for your own purposes. We will use it to signal to the rest of the program 
whether or not the required 25 seconds have passed. It will initially be off, bu t  
after the traffic is stopped, and the people cross etc., it is set. When it is set and 
Timer is called, it will count down, but rather that staying in a loop until the 
time has passed it returns (using ret) if the required time hasn't passed. When 
the required time does pass, the T bit is cleared again, and the rest of the 
program knows it's OK to stop the traffic again. After this instruction we test 
the button. 

EXERCISE 2.16 What two lines will then test the push button and loop back to 
Start if it isn't pressed? 

EXERCISE 2.17 If the button is pressed the pedestrian's WAIT light should be 
turned on, what one line does this? 

To test the T bit, you can use one of the following instructions: 
brts label ; branches if the T bit is set 
brtc label ; branches if the T bit is clear 

EXERCISE 2.18 What two lines form a new loop which calls Timer, and tests 
the T bit in SREG, staying in the loop until the T bit is clear. 

After the required time has passed, we can start slowing the traffic down. Turn 
the green motorists' light off, and the amber one on. Keep all other lights 
unchanged. 

EXERCISE 2.19 What two lines achieve this? 

As the flowchart shows, there are quite a few time delays required, and rather 
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than copy the same thing over and over, it makes sense to use a time delay 
subroutine. If we look at the minimum delay we will be timing (which is 0.5 
second for the flashing), we can write a delay for this length and then just call 
it several times to create longer delays. The delay will be called HalfSecond, 
and so to wait 4 seconds we call this subroutine 8 times. We could simply write 
rcall HalfSecond eight times, but a shorter way would be the following: 

ldi temp, 8 ; 
FourSeconds: 

rcall HalfSecond ; 
dec temp 
brne FourSeconds ; 

temp is loaded with 8, and then each time it is decremented, ltalfSecond is 
called. After doing this eight times it skips out of the loop. 

After this 4 second delay the red motorists' light must be turned on, and the 
amber one off. The red pedestrian light must be turned off, and the green one 
on. The pedestrian's WAIT light must also be turned off. 

EXERCISE 2.20 Which two lines will make the required output changes? 

EXERCISE 2.21 Which four lines make up an 8 second delay? 

After the 8 seconds, the red motorists' light turns off, and the motorists' amber 
and pedestrians' green lights must flash. Start by turning the flashing lights on, 
and then we will look at how to make them flash. 

EXERCISE 2.22 Which two lines make the required output changes? 

To toggle the required two lights, we need to invert the states of the bits. There 
are two ways to invert bits. We could take the one's complement of a register, 
using: 

corn register 

This inverts the states of all of the bits in a register (0 becomes l, 1 becomes 0). 

EXERCISE 2.23 If the number in temp is 0bl0110011, what is its resulting 
value after corn temp? 

However, we want to selectively invert the bits. This is done using the exclusive 
OR logic command. A logic command looks at one or more bits (as its inputs) 
and depending on their states produces an output bit (the result of the logic 
operation). The table showing the effect of the more common inclusive OR 
command on 2 bits (known as a truth table) is shown below: 
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inputs result 
0 0 0 
o i 1 
1 0 1 
1 1 1 

The output bit (result) is high if either the first or the second input bit is high 
(or if both are high). The exclusive OR is different in that if both inputs are high, 
the output is low: 

inputs result 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

One of the useful effects is that if the second bit is 1, the first bit is toggled, and 
if the second bit is 0, the first bit isn't toggled (see for yourself in the table). In 
this way certain bits can be selectively toggled. If we just wanted to toggle bit 0 
of a file register, we would exclusive OR the file register with the number 
00000001. 

The exclusive OR instruction is: 

eor regl, reg2 ; 

This exclusive ORs the number in reg2 with the number in regl, leaving the 
result in regl. 

EXERCISE 2.24 What four lines will read state of the lights into temp, selec- 
tively toggle bits 1 and 3, and then output temp back to PortB. (Hint" You will 
need a new register, call it tog.) 

EXERCISE 2.25 Challenge/Incorporate the previous answer into a loop that 
waits half a second, selectively toggles the correct lights, and repeats eight 
times. You will need a new register to count the number of times round the loop; 
call this Counter, and call the loop FlashLoop. This should take eight lines. 

The traffic lights can now return to their original states, but before looping back 
to Start, remember to set the T bit. You can do this directly using the following 
instruction" 

set ; sets the T bit 
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EXERCISE 2.26 Write the final two lines of the program. 

What remains for us now are the two subroutines, HalfSecond and Timer. We 
will tackle HalfSecond first as it should be the more straightforward. 

EXERCISE 2.27 Without using the Timer 0, create a half second delay, and use 
this to write the eight lines of the HalfSecond subroutine. A 2.4576 MHz 
crystal is being used. 

For Timer, we first test the T bit. If it is clear we can simply return. 

EXERCISE 2.28 Write the first two lines of the Timer subroutine. 

We can then use the same method we used before in timing loops; however, 
instead of looping to the top of the section, return from the subroutine. The 
required time is 25 seconds, which on a 2.4576 MHz crystal with Timer 0 
running at CK/1024 corresponds to a marker of 240 and a counter of 250 (work 
it out!). 

EXERCISE 2.29 Challenge! Write the remaining ten lines of the Timer subrou- 
tine. Assume your counter and marker registers have been set up in the Init 
section (do this!), and reset the counter register with its initial value at the end 
of the subroutine. Don't forget to clear the T bit at the end of the subroutine (use 
the elt instruction). 

Congratulations! You have essentially written this whole program yourself. To 
check the entire program, look at Program H (Appendix J). 

Logic gates 
We had a short look at the inclusive OR and exclusive OR logic gates, and now 
we'll look at other types: AND, NAND, NOR, ENOR, BUFFER, NOT. The 
truth tables are as follows: 

AND 

inputs result 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

This is useful for masking (ignoring certain bits). If the second bit is 0, the first 
bit is masked (made 0). If the second bit is 1, the first bit remains intact. 



66 Basic operations with AT90S1200 and TINY12 

Therefore ANDing a register with 0b00001111 masks bits 4-7 of the register, 
and leaves bits 0-3 the same. 

NAND 

inputs result 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

This is the opposite of  an AND 

NOR 

inputs result 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

This is the opposite of  an OR 

ENOR 

inputs result 
0 0 1 
0 1 0 
1 0 0 
1 1 1 

This is the opposite of  an EOR 

NOT 

input result 
0 1 
1 0 

Only one input, output is opposite of  input 

Buffer 

input result 
0 0 
1 1 

Only one input, output copies input 
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There aren't specific instructions for all these gates, but they can be imple- 
mented using a combination of available instructions. 

Program I" logic gate simulator 
�9 Logic functions 
�9 TinyAVR 

Our next project will be a logic gate simulator which can be programmed to 
act as any of the eight gates given above. It will therefore require two inputs 
and one output, and three inputs will together select which gate it is to emulate. 
This makes a total of six I/O pins, which just fits on the Tiny AVR chips. We 
will be writing this program for the Tiny l2 AVR in particular, but it can be 
adapted to most of the other types, including the 1200 that we have so far been 
writing for. Figure 2.22 shows the pin layouts of some of the members of the 
Tiny family. 

(RESET) PB5 [-- 

(ITAL1) PB3 ['- 

(XTAL2) PB4 [-" 

GND ['-- 

AT tiny 10/1 1 

1 8 

2 7 

3 6 

4 5 

-7 VCC (RESET) PB5 [ '- 

-] PB2 (TO) (ITAL1) PB3 [-- 

- ]  PB1 (INT0/AIN1) (XTAL2) PB4 r-- 

-7 PBO (AIN0) GND F- 

AT tiny 12 

- - L / - -  

1 8 

2 7 

3 6 

4 5 

--lvcc 

-7 PB2 (SCK/TO) 

- ]  PB1 
(MISO/INTO/AIN1) 

PB0 (MOSI/AIN0) 

F i g u r e  2 . 2 2  

Basic features about this family include having a 6-bit Port B (PB0-PB5), but 
these six I/O pins are available only under certain circumstances. For example, 
you can see that PB3 and PB4 are also the oscillator inputs, and so to use these 
as I/O pins requires selection of the internal oscillator. Using a separate oscil- 
lator (and therefore only needing XTAL 1 as a clock input) means PB4 is avail- 
able, but PB3 isn't. Using the RESET pin as a reset pin means losing PB5. So 
you can see that having six I/O is very much a maximum. Also, take note that 
on the Tinyl0 and Tinyl 1 PB5 is an input only. On the Tinyl2, PB5 is an input 
or an output drain (this means you can make it an output, but only a low output 
- i.e. it can sink but not source current). This means that although PinB and 
DDRB are 6 bits long, PortB is only 5 bits long. PB5 therefore has no internal 
pull-up, and so needs an external resistor. An advantage of the Tiny AVRs over 
the 1200 model we have been using so far is the availability of the following 
instruction: 



68 Basic operations with AT90S1200 and TINY12 

lpm 

This loads the contents of the program memory pointed to by Z into register 
R0. This means we can use the program memory itself as a look-up table, as 
opposed to using up working registers. It is also more efficient on code, as each 
instruction in the program memory is 16 bits long, so we can store 2 bytes in 
place of an instruction. We will be needing this instruction in the example 
project. 

�9 ,,, , , ,, J , ,  J , ,  , 

. .  . . . . .  ~ [ PB4/XTAL2 PBO/AIN0 

? 

" ' v  ! ,, i ii i i - 

,.,+5V 
v 

~ D1 
LED= 0V 

v 

Figure 2.23 

The circuit diagram for the logic gate project is shown in Figure 2.23. Note 
that the NOT and Buffer gates take only one input, and so we will be using PB 1 
as the input for these gates. Therefore, the effective two-inputtruth tables for 
the NOT and Buffer gates are: 

NOT 

inputs result 
0 ~ 1 
0 1 1 
1 0 0 
1 1 0 
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Buffer 

inputs result 
0 0 0 
0 1 0 
1 0 1 
1 I. 1 

EXERCISE 2.30 Have a go yourself at constructing the flowchart, before 
looking at my version in the answer section. You need not make it more than 
three boxes in size, as we aren't yet concerned with sorting out how to manage 
the imitating of the individual gate types. 

When writing the Init section the output, PB2, should initially be off. To choose 
which logic gate the AVR is to imitate, we have a binary switch which sets its 
outputs between (000) and (111) depending on the state of the switch. We there- 
fore have to use this in the program to determine which section to jump to. 
Although the output from the switch is between 000 and 111, the resulting 
number in PinB is between xx000x and xxl 1 l x, where the states of bits 0, 4 
and 5 must be ignored. We therefore take the number in PinB and mask bits 0, 
4 and 5 using: 

andi reg, number 

This ANDs the number in a register with the immediate number (only for regis- 
ters R16-R31). To mask bits 0, 4 and 5, but keep bits 1-3 intact, we AND the 
register with 0b001110. We then rotate it once to the right, making sure that 
only zeros appear in bit 5 during the rotation. 

EXERCISE 2.31 What is the appropriate rotation instruction to use? 

The result is a number between 0 and 7 which we shall use to access a location 
in the program memory, and so we should load PinB into the ZL register as this 
will be used to point to a specific address. 

EXERCISE 2.32 Write the three lines which read PinB into ZL, mask bits 0, 4 
and 5, and then rotate it to the right as required. 

Our look-up table will begin after the r jmp Init instruction. This instruc- 
tion is at address 000 of the program memory (which is why it is the first one 
executed). Instructions are 16 bits long, and so take up 2 bytes (or one word). 
Program memory addresses are therefore word addresses, and the byte address 
is 2 times the word address. Figure 2.24 illustrates this. 
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word 00 
I 

I I 
0 0 1 0  0011 0001  0000  

I I I 
I l 

byte 00 byte 01 

= and r 16 , r 17  

Figure 2.24 

Our look-up table will therefore start at word address 001 which is equivalent 
to byte address 002. ZL points to the byte address, so we will have to add 2 to 
ZL to start it pointing to the bottom of the look-up table. 

EXERCISE 2.33 Which two lines will add 2 to ZL and then use ZL to read a 
value from the program memory into R0? 

Now the real question is what to have in the look-up table that is going to tell 
the program how to act like a particular logic gate. After some thought, I have 
found that using a split form of the truth table for each gate gives us the most 
straightforward solution. What we are about to do now may appear far from 
obvious, but hopefully after some thought you will see that ultimately it works 
rather neatly. 

We are going to have a byte for each logic gate. For each gate, we take the 
truth table and look at the set of output states (e.g. 0001 for an AND gate, and 
0111 for an inclusive OR). We then split these nibbles into two sets of 2 bits, 
and make these bits 4 and 5 and 0 and 1 of a byte. For example, AND: 0001 
splits into 00 and 01, and then becomes 00000001. Inclusive OR: 0111 splits 
into 01 and 11, and the becomes 00010011. 

EXERCISE 2.34 What are the relevant bytes for the NAND, NOR, ENOR, EOR, 
NOT and Buffer gates? 

We then list these in the look-up table in any order we choose (noting that their 
position in the table defines how the code in PB 1, 2 and 3 refers to a particular 
gate). The assembler has directives (instructions for the assembler) which tell it 
to place the following word or byte into the program memory. These directives 
are .dw (define word) and .db (define byte). If using .dw, you will have to 
group the bytes derived above into pairs (arbitrarily if you wish), e.g.: 

.dw 0b0000000100010011 ; code for AND and IOR 

OR 
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.db 0b00000001, 0b00010011 ; code for AND, code for IOR 

There is one important difference between the two lines above. When using .dw, 
the lower byte of the word has the lower byte address. For example, if the two 
lines above were both written at word address 00, the code for the IOR would 
be at byte address 00 in the .dw example, and at byte address 01 in the .db 
example. As long as you take note of the correct byte addresses, it doesn't 
matter which way you do it. 

EXERCISE 2.35 
or .db. 

Complete the other three lines of the look-up table using .dw 

Therefore, using the lpm instruction we have obtained a form of the truth table 
for each gate at R0. We will then test Input A of the gate (PB4). If it is low we 
swap the nibbles of R0 (e.g. 00000001 becomes 00010000). What this does is 
select which half of the truth table we wish to access (remember we split it up 
into two halves). The swap instruction is: 

swap reg 

and swaps upper and lower nibbles of a register. We then test Input B of the gate 
(PB5). If it is low we rotate the number in R0 to the right. What this does is 
select which of the two outputs remaining in the truth table is the right one. The 
four lines we need are therefore: 

sbis PinB, 4 ; tests Input A 
swap R0 ; swaps nibbles if low 
sbis PinB, 5 ; tests Input B 
ror R0 ; rotates right if low 

The state of R0, bit 0 now holds the output we wish to produce in PB0. 
However, we don't want to change the states of the pull-ups on the inputs, so we 
want to move a number into PortB that is all 1 s for PB 1-4, and PB0 equal to bit 
0 of R0. Just like ANDing is a way to force certain bits low (masking), inclu- 
sive ORing is a way to force certain bits high. For example, in this case if we 
IOR R0 with 0b 11110 we will get a number that is all l s except PB0 whose 
state is intact. We can then move the result of this into PortB safe in the knowl- 
edge that the pull-ups will remain. The inclusive OR instruction is: 

ori reg, number ; 

This inclusive ORs a register with the immediate number, but only works on 
registers R16-R31. We therefore have to move R0 into temp using the mov 
instruction. 
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EXERCISE 2.36 What four lines take the number in R0, move it to temp, force 
bits 1-4 high and then output it to PortB before looping back to Start. 

This finishes off the program, it is shown in its complete form in Appendix J. 

SREG- the status register 

We have seen some of the bits of SREG (zero flag, carry flag and T bit), and we 
will now look at the remaining five. They can all be individually tested, set or 
cleared using general SREG instructions: brbc and brbs which we have already 
met, and: 

bset bit 
bclr bit 

; sets a bit in SREG 
; clears a bit in SREG 

Each bit also has its own personalized instructions (such as breq and brcc) 
which are listed in Appendix C. The bits in SREG are: 
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S R E G -  STATUS Register ($3F) 

bit no. 7 6 5 4 3 2 1 0 
bit name I T H S V N Z C 

Carry flag: 
Reacts to carrying 
with arithmetic 
operations, and to 
the ror and rol 
instructions. 

Zero flag: 
0: The result wasn't 0 
1: The result was 0 

Negative flag: 
0: MSB of result is 0 
I :MSB of result is 1 

Two's complement overflow flag: 
0: No two's complement overflow 
1: Two's complement overflow 

occurred 

Sign flag: (XOR of V and N bits) 
0: Result is positive 
1: Result is negative 

Half carry flag: 
Like the carry flag, except for the lower nibble 

(i.e. 4 lsbs) 

T bit: 
A temporary bit 

Global interrupt enable: 
Master switch for the interrupts 

(cleared when an interrupt occurs) 

If you want to check whether a particular instruction affects a certain flag, 
check out the Instruction Overview (Appendix D). The purposes of the nega- 
tive, two's complement overflow, and sign flags should be clear if you cast your 
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mind back to the section on negative binary numbers. The half carry flag 
behaves in exactly the same way as the carry flag, except for the lower nibble. 
For example: 

1111 
01011010 = 90 
00001111 = 1 5  

01101001 = 105 

This operation would set the half carry flag, as there was a carry on the bit 3 
pair. The global interrupt enable will be introduced in the section on interrupts 
in Chapter 4. 

Watchdog timer 

A potentially useful feature of AVR chips is the watchdog timer: a 1 MHz 
internal timer, independent of outside components, which resets the AVR at 
regular intervals. In order to stop the AVR resetting, the watchdog timer must 
be cleared at regular intervals (i.e. before it has time to reset the chip). It is 
chiefly used as a safety feature, for if the program crashes the watchdog timer 
will shortly kick in and reset the chip, hopefully restoring normal operation. The 
watchdog timer is cleared using: 

wdr 

This resets the watchdog timer (often called 'patting the dog'). The watchdog 
timer (WDT for short) is controlled by the WDTCR register: 
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W D T C R -  Watchdog Timer Control Register ($21) 

bit no. 7 6 5 4 3 2 

bit name  . . . .  W D E  W D P 2  
I 

I 

O00 
001 
010 
011 
100 
101 
110 
111 

W D P I  

L 
15 ms 
30 ms 
60 ms 
0.12 second 
0.24 second 
0.49 second 
0.97 second 
1.9 seconds 

Watchdog enable: 
O: Watchdog Timer disabled 
1: Watchdog Timer enabled 

WDPO 

WDE controls whether or not the WDT is enabled, and WDP0-2 controls the 
length of time before the chip is reset. Note that the times given in the table are 
susceptible to temperature effects and are also a function of the supply voltage. 
The values in the table are for a supply of 5.0 V. For a 3.0 V supply the times 
are approximately three times longer. 

S/eeO 
There are often applications where you wish the chip to be idle for a while until 
something happens. In such cases it is handy to be able to send the AVR to a 
low power mode called sleep. The AVR can be woken up from sleep by an 
external reset, a WDT reset, or by an interrupt (these are discussed in Chapter 
4). The instruction to send the AVR to sleep is simply: 

sleep 

There are two types of sleep: a light snooze and a deep sleep. The light snooze 
(called idle mode) halts the program but keeps the timers (such as Timer 0) 
running. The deep sleep (called power-down mode) shuts down everything such 
that only the WDT, Reset pin, and INT0 interrupt can wake it up. 

For example, to design a device that turns on when moved, we could do the 
following. Test the vibration switch and go to (deep) sleep if it is off. The WDT 
will then wake up the AVR and reset it. Testing the vibration switch will take a 
few microseconds, and the WDT could be set to time out every 60 ms, meaning 
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the AVR is only on for about a thousandth of the time. When the vibration 
switch does eventually trigger the AVR will skip the sleep instruction and 
continue with normal operation. The WDT could then be disabled or reset at 
regular intervals using wdr. 

To control the sleep properties of the AVR, we use an I/O register called 
M C U C R  ($35). Bit 5 of the MCUCR is the sleep enable, and this bit must be 
set if you wish to use the sleep instruction. Bit 4 selects which type of sleep you 
require (0 for idle mode and 1 for power-down mode). 

More instructions - loose ends 

Through the example projects we have encountered the majority of the instruc- 
tions for the 1200 and Tiny AVRs. Here is the remainder: 

neg reg 

This instruction makes the number in a register negative (i.e. takes the two 
complement). 

nop 

This stands for no operation, in other words do nothing. This essentially wastes 
one clock cycle, and can be quite useful. There are further instructions which 
perform logic and arithmetic operations on pairs of registers: 

and regl, reg2 
or regl, reg2 
add regl, reg2 
adc regl, reg2 
sub regl, reg2 
sbc regl, reg2 

; ANDs reg 1 and reg2, leaving result in reg 1 
; ORs regl and reg2, leaving result in regl 
; adds regl and reg2, leaving result in reg 1 
; as add, but adds an extra 1 if the Carry flag is set 
; subtracts reg2 from reg 1, leaving result in regl 
; as sub, but subtracts a further 1 if the Carry flag 
; is set 

There are also instructions to load a specific bit in a register into the T bit of 
SREG: 

bst reg, bit 
bid reg, bit 

; stores a bit in a register into the T bit 
; loads a bit in a register into the T bit 

There are two more comparing instructions: 

cpse regl, reg2 ; 

This compares two registers and skips the next instruction if they are equal. In 
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the same way that the cp instruction effectively performs a sub between two 
registers without actually changing them, the instruction cpc effectively 
performs an sbc between two registers without actually changing them. The 
SREG flags (e.g. carry and zero flag etc.) are affected in exactly the same was 
as with the sub and sbc instructions: 

cpc regl, reg2 ; compares two registers taking the Carry flag into 
; account 

Finally there are two instructions for testing the state of a bit in a working 
register: 

srbc reg, bit 

srbs reg, bit 

; tests a bit in a register and skips next instruction if 
; clear 
; tests a bit in a register and skips next instruction if 
; set 

Major program J" frequency counter 

�9 Multiple seven segment display 
�9 Timing + counting 
�9 Watchdog timer 

We will end the chapter with a large project covering the key issues raised. We 
will design a frequency counter with a range 1 Hz-999 kHz. The frequency will 
be displayed on three seven segment displays, giving the frequency in Hz if it is 
less than 1 kHz, and in kHz otherwise. An LED will indicate the units. As an 
added feature, the device will stay on only when a signal greater than 1 Hz is 
fed into the input, and it will go to sleep when such a signal disappears. The 
circuit diagram is shown in Figure 2.25. 

Notice that as we will be strobing the seven segment displays, each display will 
be on for only one-third of the time. In order to give each LED the same average 
current as it would be getting if it were being driven continuously, we need to 
divide the LEDs' series resistors by 3. Assuming a 5 V supply and a 2 V drop 
across the LED, there will be 3 V across the resistor. To supply a current of 10 mA 
to the LED if it were driven continuously, we would therefore choose a resistor 
value of 300 ohms. For this case I have therefore gone for a value of 100 ohms. 

There are two ways to measure frequency. For high frequency signals it is 
best to take a fixed amount of time and count the number of oscillations on the 
input during that time. This can then be scaled up to represent a frequency. For 
lower frequency signals this method becomes too inaccurate, and so instead we 
measure the length of time between rising edges on the input. The program will 
have to work out whether the input frequency is high or low, and therefore 
which method it should use. 
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We have only one timer/counter at our disposal, which is an inconvenience, 
but something we can live with. For high frequency signals it is necessary to use 
T/C0 to count the input signal, as it will be difficult to test the input reliably. For 
lower frequency signals it will be easier to test the input directly, and more 
importantly to measure time accurately. This will be a long program, so it is all 
the more important to have a clear flowchart, shown in Figure 2.26. 

High Speed [ 

I 
I Set-up for High Speed ] 

YE 

NO 

NO 

I Increment higher byte I 

I Oiso.a  reos I 
I 

I 
Divide number of counts by 
64 to get frequency in kHz 

~ YES 

[ Convert number into 3 digits I 

~ Y E S  

I UoOoteO,so,a  I 
I 

Set-up 

I 

r 

Low Speed 

I 
I Set-up for Low Speed I 

I 
i 

Wait for PD4 to change I 
I 

YES 

NO 

NO 

I Increment higher byte(s) I 

NO 

Turns off display and 
goes to sleep 

YE 

"[ NO 
I Convert number into 3 digits 

I 

Figure 2.26 
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The test for high frequency signals takes the shortest time (64 ms), so the 
program will run this first. If the frequency measured is less than 1 kHz, the 
program will jump to the low-speed testing. The idea behind the high-speed 
testing is to time 64 ms by counting clock cycles (i.e. without T/C0), and count 
signals on T/C0. The only problem is that for timing up to 1 MHz, we would 
expect 64 000 cycles, i.e. well above 256. We therefore need to be monitoring 
T/C0 to see when it overflows, and increment a counter which would act as a 
higher byte for T/C0. You can now see why I chose 64 ms. The maximum 
number which can be stored over two registers is 0xFFFF = 65 536, so 64 000 
is close to the maximum. Furthermore to convert the number of counts into a 
frequency in kHz, we need only to divide the number of counts by 64. Dividing 
a number by 2 n is easy - we simply rotate the number to the right n times (you 
may want to try this out on paper). This makes 64 ms an ideal choice. 

For the low-speed test, we change T/C0 to count internally. We wait for the 
input to change and then start timing, waiting until the input changes a further 
two times before stopping again (this times the length of one cycle). Again, if 
we look at 1 Hz, with T/C0 counting at 4 MHz, this represents 4 million cycles, 
and we will need three registers to hold the entire number. If the time is greater 
than these three registers can hold, we know the time is less than 1 Hz, and so 
send the AVR to sleep. The WDT will be set to wake up the AVR every 1024 
ms (i.e. about once a second), though note that in normal operation the WDT 
will have to be cleared regularly. 

For the Init section, set up the ports with no pull-up on the input signal pin. 
Also, set up the WDTCR to enable the WDT to reset every 1024 ms, and 
configure MCUCR to enable deep (power-down) sleep. 

We now need to carefully construct the main loop in which the timing will be 
carried o u t -  this is the most important part of the program. We can guess that 
the loop is going to take somewhere between 4 and 10 cycles, so for 64 ms = 
256 000 clock cycles, we are going to have to count down between 64 000 and 
25 600 times, we can therefore make a guess that two counting registers 
(Delay l and Delay2) can be used to count the time, but we will have to actually 
write the loop before we can be sure. Before we enter the loop we will have to 
set up the delay registers (we don't know what we will have to move into them 
as this depends on the loop length), set up how T/C0 is going to count, and reset 
T/C0 to 0. We will also use the move 0b 10000000 into Port B to turn on the kHz 
LED and reset the display. You will notice there is also a line clearing a register 
called upperbyte,  we will see the significance of this register shortly. 

9 9  ldi D e l a y l , . .  
ldi Delay2, ?? 

ldi 
out 
ldi 

temp, 0b00000111 ; sets T/C0 to count rising edge 
TCCR0, temp ; on TO (PD4) 
temp, 0bl0000000 ; turns off all displays and turns on 
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out PortB, temp ; kHz LED 

clr upperbyte ; clears a counting register 
clr temp ; resets Timer 0 
out TCNT0, temp ; 

The loop itself starts with the standard decrementing of the 2-byte number 
spread over the delay registers, skipping out of the loop if the time has passed: 

HighSpeed: 
subi Delayl, 1 
sbci Delay2, 0 
brcs DoneHi 

; decrements Delayl 
; decrements Delay2 if carry high 
; jumps out of loop if time passed 

We then need some way of testing to see if T/C0 has overflowed. There are two 
ways of doing this. The simplest is to test the timer overflow flag, which, unlike 
the other flags we've met so far, is stored in the TIFR I/O register. 
Unfortunately, we cannot test this flag directly with the sbic or sbis instructions, 
as it is number 0x38 which is greater than 0xlE We would therefore have to 
read TIFR into a working register, then test the bit. More irritating is the fact 
that we need to reset it by writing a one to it. Again, we cannot use the sbi 
instruction, and instead have to do it through a working register. This overall 
process takes five instructions, but there is an alternative method which only 
uses four. The concept behind this method is to store the current value ofT/C0 
and compare it with the value that was in T/C0 the previous time in the loop. 
We would expect the current value to always be greater than the previous value, 
except when it overflows. By comparing the old and new values, and branching 
if the new is less than the old, we therefore detect an overflow, and no resetting 
of flags is needed. In the code below, we use register temp to store the new 
value, and temp2 to store the old value: 

mov temp2, temp 
in temp, TCNT0 
cp temp, temp2 
brsh HighSpeed 

; copies temp into temp2 (old value) 
; reads new value into temp 
; compares old and new 
; loops back if new is 'same or higher' 

If you count through the total HighSpeed loop of seven instructions, you will 
see it takes eight clock cycles if T/CO doesn't overflow (remember a 
branching instruction takes two clock cycles). What we need to do now is 
construct a similar loop that will increment the higher byte, see if it's too high, 
decrement our counting registers, skip out if they've reached zero, and loop 
back to HighSpeed, all in the same number of  clock cycles. This final part is 
crucial to ensure the timing is perfect. Fortunately we can do it all, with a 
clock cycle to spare! We therefore use nop to waste one cycle. The maximum 
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number of counts we are allowing on the input is 63 999 in the 64 ms (i.e. 1 
MHz is just too high, and so 64 000 is just too high - 64 000 translates as 
0xFA00, which is handy as we can simply test if the upper byte has reached 
0xFA). If it has we know how to skip out of the loop: 

inc upperbyte 
cpi upperbyte, 0xFA 
breq TooHigh 
subi Delayl, 1 
sbci Delay2, 0 
brcs DoneHi 
nop 
rjmp HighSpeed 

; increments higher byte 
; too high? 
; skips out of loop if too high 
; decrements counting registers 

; skips out of loop if done counting 
; wastes one cycle 
; loops back 

Now you may be thinking 'hang on, there are nine cycles in the above segment, 
not eight!'. You are right, of course, but think about the number of cycles in the 
previous section if the program does not loop back to ltighSpeed. If the 
program does not loop back, it does not branch, and so takes one less clock 
cycle. We make up for this one less clock cycle in the loop above with one more 
in this loop. Thus in the running of this whole section, the counting registers 
will either decrement once every eight clock cycles or twice every 16 clock 
cycles. You may want to write the whole loop down and work through it to 
convince yourself of this. Now that we know the delay registers decrement 
every eight clock cycles, we can work out what to initialize them to in order to 
create a 64 ms delay. 

EXERCISE 2.37 What should Delayl and Delay2 be initialized to? 

That's the hardest part done! We now need to immediately store the current 
value ofT/C0. The only problem is, what if T/C0 has overflowed in between the 
last test for overflowing and now? We need to use the same test as before. 

EXERCISE 2.38 Write the six lines which make up the section called DoneHi, 
which stores T/C0 into lowerbyte, and compare this value with temp (which 
represents the old value ofT/C0). If lowerbyte is 'same or higher' it skips to a 
section called Divide64, if it isn't, it increments upperbyte, tests to see if it has 
reached 0xFA, and jumps to TooHigh if it has. 

The next section needs to divide the 2-byte number split up over lowerbyte and 
upperbyte by 64 = 2 6. We do this by rotating the whole number six times; to 
rotate the upper byte into the lower byte, we rotate the upper byte fight with zeros 
filling bit 7, and then rotate the lower byte fight with the carry flag filling bit 7. 

EXERCISE 2.39 What two lines divide the 2-byte number by 2? 
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The Divide64 loop does this six times. First we set up temp with the number 6, 
then divide by 2 as we've done above. Then decrement temp, looping back if it 
does not equal zero. We don't want to reset temp with 6, so we really want to 
jump to Divide64 and then skip one instruction. This can be done using the 
following trick: 

rjmp Divide64+l ; jumps to Divide64 and then skips one 

This works with any jumping/branching instruction, and for any number of 
skips. Note that large skips (e.g. +8) lead to unwieldy programs which are hard 
to follow and easy to get wrong. 

EXERCISE 2.40 What five lines make up the Divide64 section? 

We test to see if the number is too low. The 2-byte word holds the frequency in 
kHz, so if this number is less than 1 (i.e. 0) we know how to change to the low- 
speed testing method. 

EXERCISE 2.41 What four lines test to see if both bytes are 0, and skips to 
LowSpeed if they are. 

We then need to convert this number split over 2 bytes into a number of 
hundreds, tens and ones so that they can be displayed easily. This will be done 
in a subroutine, as we will have to do it in the LowSpeed section as well. To do 
the conversion we will call DigitConvert. As the displays are being strobed, we 
need to be calling a display subroutine at regular intervals. Unfortunately, our 
carefully constructed timing loop above cannot accommodate the calling of a 
display subroutine, as this would insert large numbers of clock cycles and 
disrupt the timing. The timing routine only takes 64 ms, so the idea here is to 
leave the displays idle for 64 ms, and then let them run for half a second. 

We stick in a simple half second delay using counting registers, making sure 
we call the Display subroutine during the loop. 

EXERCISE 2.42 Write the nine instructions which set up the three delay regis- 
ters, and then create a half second delay loop which also calls Display. When 
the required time has passed, the program should jump back to Start. You will 
have to take the length of the Display subroutine into account when doing your 
calculations. The rcall instruction actually takes three cycles, and the ret 
instruction takes four. On average, the subroutine itself will take two instruc- 
tions, so assume the whole subroutine action adds nine clock cycles to the loop. 
Call the delay loop HalfSecond. 

All that remains in the high-speed timing method is to deal with the Tooltigh 
section, which simply has to make the display registers show-HI. The numbers 
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to be displayed will be stored in registers called Hundreds, Tens and Ones. 
There will be a look-up table as before, except in this table 10 will be translated 
as the symbol for an 'H' ,  and 11 as the symbol for a hyphen '- ' .  A 12 will be 
translated as a blank space (i.e. no segments on), and so you should set all digits 
to 12 in the Init section. We therefore need to move 11 into Hundreds ,  10 into 
Tens and a 1 into Ones (as a 1 will look like an I), and the Display subroutine 
will do the rest. After this we jump to three lines before the start HalfSecond 
section (these three lines previously set up the HalfSecond counting registers). 

EXERCISE 2.43 What four lines make up the TooHigh section? 

This marks the end of the high-speed timing method, and therefore the halfway 
point in the program. 

Let's have a look at the DigitConvert  subroutine. This takes a number split 
over upperbyte  and lowerbyte, and converts it into a number of hundreds, tens 
and ones. This is done by repeatedly subtracting 100 from the 2-byte number 
until there is a carry. 100 is then added back, and the process is repeated with 
10. The number left in the lower byte after this is simply the number of ones, so 
we can just move the number across. Once we have extracted the number of 
hundreds, we no longer need to involve the upper byte, as we know the number 
is now entirely contained in the lower byte (if the number is less than 100 it fits 
in one byte). 

DigitConvert: 
clr Hundreds ; resets registers 
clr Ones 
clr Tens 

FindHundreds: 
subi lowerbyte, 100 
sbci upperbyte, 0 
brcs FindTens 
inc Hundreds 
rjmp FindHundreds 

; subtracts  100 from lower byte 
; subtracts  1 if carry 
; does 10's if carry 
; increment number of hundreds 
; repeats 

FindTens" 
subi 
subi 
brcs 
inc 
rjmp 

lowerbyte,-100 ; adds back the last 100 
lowerbyte, 10 ; subtracts 10 from lower byte 
FindOnes ; does l's if carry 
Tens ; increments number of tens 
FindTens+l ; repeats, but doesn't add 100 again 

FindOnes: 
subi lowerbyte,-10 ; adds back the last 10 
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m o v  

ret 
ones, lowerbyte ; number left in lowerbyte = ones 

; finished 

You may want to work your way through this program with a sample number 
(e.g. convince yourself that 329 gets reduced to 3 hundreds, 2 tens and 9 ones). 

The other subroutine is Display. This has to choose which of the three 
displays to activate, find the appropriate number in Hundreds, Tens or Ones, 
and then display it. In the half second loop we've written, the subroutine is 
called about once every 4 ms. We can't make the displays change this often as 
the LEDs won't have time to turn fully on and the display will be faint with 
shadows (numbers on other displays appearing on the wrong display). We there- 
fore build in an automatic scaling of 50 - i.e. the subroutine returns immedi- 
ately having done nothing 49 times, and then on the 50th time it's called, it 
performs the display routine, and then repeats. This means the displays are 
changing every 0.2 ms which is far better; however, should you experience any 
of the effects described above, you may wish to increase 50 to a higher value. 

We will use a register called DisplayCounter. This will be set up in the Init 
section with the value 50. The beginning of Display therefore decrements 
DisplayCounter, and returns if the result is not 0. If it is 0, DisplayCounter 
should be reloaded with 50. Furthermore, we can take this opportunity to clear 
watchdog timer. This must be done regularly, and the Display subroutine is 
called regularly in whichever part of the program it happens to be (by regularly 
I mean at least once a second). A simple solution is therefore to reset the WDT 
when the Display subroutine continues. 

EXERCISE 2.44 Write the five lines at the start of the Display subroutine. 

We need some way to know which display we will be displaying, and will store 
this as a number between 0 and 2 in a register called DisplayNumber. 
Therefore, the first thing we do is increment DisplayNumber and reset it to 0 
if it has reached 3 (you will also have to clear DisplayNumber in the Init 
section). 

EXERCISE 2.45 
perform this. 

Write the subsequent four lines of the subroutine which 

Now we need to do some serious indirect addressing! First, we extract the right 
number to be displayed from Hundreds, Tens or Ones. You will have to define 
these at the top of the program, I defined mine as R26, R27 and R28 respec- 
tively. We therefore set up ZL to point to R26 (move 26 into ZL), and then add 
the number in DisplayNumber. This will point to one of the three numbers we 
want to display. Using the ld instruction we load this value into temp. The seven 
segment display codes are stored in registers R0-R12, and so we now zero ZL 
to R0 (move 0 into it). Adding to R0 the number read into temp should point to 
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the seven segment code of the number to be displayed. Again, load this value 
into temp. We mustn't clear bit 7 of PortB if it is on (indicating kHz). Therefore, 
test bit 7 of Port B, if it is on, OR the number in telnp with 0b 10000000, and 
then in either case move ternp into Port B. 

EXERCISE 2.46 
code to Port B. 

Write the nine lines which output the correct seven segment 

The remainder of the subroutine must turn on the correct seven segment display. 
Remember the essence of strobing: the number you have just outputted to Port 
B is going to all of the displays, but by turning only one of them on, the number 
only appears in one of the displays. We basically want to turn on PortD bit 0, 
then bit 1, then bit 2 and then back to bit 0. The easiest way to do this is to read 
PinD into temp, rotate it left without letting any 1 s creep in (i.e. use lsl), test to 
see if bit 3 is high (i.e. gone too far), and reset the value to 0b00000001 if it is. 

EXERCISE 2.47 
the subroutine? 

What six lines turn on the correct display and then return from 

Now all that is left is the low-speed testing section. We need to set up T/C0 to 
count up every clock cycle (this gives us maximum resolution). We also need to 
(reset) clear the delay registers Delay2 and Delay3, and clear PB7 to turn on the 
Hz LED. 

EXERCISE 2.48 What five lines will start off the LowSpeed section? 

We need a way to see when PD4 changes (remember now T/C0 is counting 
internally we need to test the input pin manually). There are a few methods at 
our disposal, the one I suggest is as follows. Store the initial value in PinD, and 
then enter a loop which reads in the current value of PinD, and exclusive OR it 
with the initial value. The effect of the EOR is to highlight which bits are 
different. 

Example 2.9 0b00011001 
EOR 0b 10001001 

0bl0010000 +- shows that bits 7 and 4 were different 

We are interested only in bit 4 (PD4) which is connected to the input, and so 
after performing the EOR we can test bit 4 of the answer and keep looping until 
it is high. When in any loop that lasts a long time (as this one might), we must 
also keep calling the Display routine. 

in store, PinD 
FirstChange: rcall Display 

; stores initial value 
; keeps displays going 
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in store2, PinD 
eor store2, store 
sbrs store2, 4 
rjmp FirstChange 

; reads in current value 
; EORs current and initial values 
; skips out of loop if PD4 changed 
; keeps looping until PD4 changes 

The main loop of the low-speed testing section consists of repeating the above 
test for two changes (i.e. wait for one complete period of the input's oscillation), 
and incrementing the higher bytes when T/C0 overflows. We deal with the T/C0 
overflow in the same way as before, with one important difference. We cannot 
use temp to store the old value because temp is used repeatedly in the Display 
subroutine we have just written. It is very important you look out for these kinds 
of traps as they can be a source of many problems - try to keep your use of 
working registers local (i.e. don't expect them to hold a number for too long), 
in this way you can use a register like temp all over the program. We can use 
Delayl instead of temp, as at the end of the looping, we want Delayl to hold 
the current value in T/C0. 

Before we enter the low-speed loop we need to clear Delayl and T/C0. We 
will also need some sort of counter to count the number of times the input 
changes. We need it to change only twice, so set up a register called Counter 
and load 2 into it. 

EXERCISE 2.49 Write the three pre-loop instructions. 

Now the loop looks for a change in the input in the same way as before, and 
jumps to a section called Change if there is a change. 

EXERCISE 2.50 Write the five lines which perform this test. (HINT: One of 
them is before the start of the loop, call the loop LowLoop.) 

We then call the Display subroutine, as we have to do this regularly, then test to 
see if the T/C0 has overflowed. If it hasn't overflowed, loop back to LowLoop. 
If it has overflowed, increment Delay2, and if this overflows increment Delay3. 
The minimum frequency is 1 Hz, and hence the maximum amount of time is 
about 4 000 000 counts, which in hexadecimal is 0x3D0900. Therefore if 
Delay3 reaches 0x3E we know the input frequency is too slow and will jump to 
a section called TooSlow. 

EXERCISE 2.51 
section. 

Challenger What 11 lines form the rest of the low-speed 

The Change section should decrement Counter, and loop back to LowLoop if 
it isn't zero. On the second change, it doesn't loop back but instead checks to 
see if the stored number is low enough to deserve high-speed testing. The 
maximum frequency measured with this method is 999 Hz, which corresponds 
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to 4004 clock cycles, hence if the result is 4000 (0xFA0) or less we should 
branch to Start and perform the high-speed testing. It may not be entirely clear 
how we test to see if the number spread over three registers is less than 
0x000FA0. For a start, we cannot subtract the number, as this would change the 
number in the delay registers. Instead, we use the compare instructions as we 
would if we were just testing one byte, but also make use of the epe instruction, 
which compares two registers and also takes the carry flag into account. It is 
simply analogous to subtracting with the carry (e.g. sbei but without actually 
changing the registers). The only problem with epe is that it only works between 
two file registers, not a file register and a number, so we have to load the 
numbers into temporary working registers. The necessary lines for Change are 
therefore: 

Change: in store, PortB 
dec Counter 
brne LowLoop 

; updates new value of PortB 
; waits for second change 
; not second change so loops 

ldi temp, 0x0F 
ldi temp2, 0x00 
cpi Delayl, 0xA0 
cpc Delay2, temp 
cpc Delay3, temp2 
brcc PC+2 
rjmp Start 

; sets ups temporary registers 

; compares three-byte number with 
; 0x000FA0 

; less that FA0 so goes to high-speed 

You will notice that instead of the expected line (bres Start ) -  i.e. branch 
to Start if the carry flag is set, we choose to skip the (rjmp Start) line if 
the carry flag is clear. These two methods are clearly identical in their end 
result, but why introduce an extra line? The reason lies in the fact that the bres 
can only branch to lines which are 64 instructions away. The Start line is, in 
fact, further away than this, and so must be branched to using the r jmp instruc- 
tion. Points like this will be picked up when you try to assemble the program 
and are generally missed at the writing s t a g e -  so you don't have to start 
counting 60 odd lines whenever you introduce a bres or similar instruction. 

We then convert the time period of the oscillation into a frequency. To do this 
we need to take 4 000 000 and divide it by the length of time (in clock cycles) 
we have just measured. If we measured 40 000 clock cycles over one period, 
this will correspond to 100 Hz. There is a way to perform binary long division, 
but by far the simplest method of dividing x by y is to see how many times you 
can subtract y from x. This does take fewer instructions, but will take longer to 
run. We set up 4 000 000 = 0x3D0900, spread over three temporary registers 
(temp, temp2 and temp3). Every time we successfully subtract the number 
spread over Delayl, Delay2 and Delay3, we increment a lower byte of the 
answer. When this overflows, we increment the higher byte. The answer will be 
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between 1 and 1000 so we need only two bytes for the answer. The following 
lines set up the division: 

ldi temp, 0x00 
ldi temp2, 0x09 
ldi temp3, 0x3D 
clr lowerbyte 
clr upperbyte 

; moves 4 000 000 spread over 3 
; temporary registers 

; resets the answer registers 

EXERCISE 2.52 Write the eight lines of the loop called Divide which divides 
4 000 000 by the number in the delay registers. (Hint: Call the next section 
DoneDividing and jump to this section when a subtraction was unsuccessful 
(carry flag was set).) 

As with the high-speed section, we then convert the number in lowerbyte and 
upperbyte into hundreds, tens and ones. We can use the DigitConvert subrou- 
tine we have already written. The program then loops back to LowSpeed. 

EXERCISE 2.53 What two lines wrap up the low-speed testing loop? 

All that remains is the section called TooSlow which is branched to when the 
period of oscillations is more than one second. In this case we want to turn the 
displays off and send the AVR to sleep. 

EXERCISE 2.54 Write the three lines which make up the TooSlow section. 

You will have to remember to set up registers R0 to R11 with the correct seven 
segment code in the Init section. As you can use only the ldi instruction on 
registers R 16-R31 you will have to move the numbers first into temp, and then 
move them into R0 to R 11 using the mov instruction. Also, remember to set up 
PortD with one of the displays selected (e.g. 0b00000001), and define all your 
registers at the top of the program. It should now be ready for testing with the 
simulator. This may be worth building as it performs a useful function; 
however, you will notice that its resolution isn't great as you get only three- 
figure resolution between 100 Hz-999 Hz and 100 kHz-999 kHz. You may 
want to think about ways to improve the program to give three-figure resolu- 
tion for all frequencies in the given range. In the coming chapters we will learn 
methods that will allow us to simplify this program hugely, and it will be worth 
coming back to this at the end and gleefully hack bits off to trim down the 
program. 

Working on this larger program also introduces the importance of taking 
breaks. Even when you are 'in the zone' it is always a good idea to step back for 
a few minutes and relax. You will find you return looking at the bigger picture 
and may find you are overlooking something. Good planning and flowcharts 
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help reduce such oversights. Another good piece of advice is to talk to people 
about decisions you have to make, or problems when you get stuck. Even if they 
don't know the first thing about microcontrollers, simply asking the question 
will surprisingly often reveal the answer. 




